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@® stand within the context of conventional Feynman pertuobaheory. Non-perturbative phe-
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1 QCD

Quarks interacting with non-Abelian gauge fields are nowelyidiccepted as the basis the strong
nuclear force. This quantum field theory is known under thmewshat whimsical name of
Quantum Chromodynamics, or Q@.Dl'his system is remarkable in its paucity of parameters.
Once the overall scale is set, perhaps by working in unitgevthee proton mass is unity, the only
remaining parameters are the quark masses. The quarkseapeenew level of substructure
within hadronic particles such as the proton.

The viability of this picture relies on some rather unus@atéires. These include confine-
ment, the inability to isolate a single quark, and the spoedais breaking of chiral symmetry,
needed to explain the lightness of the pions relative tordtlhdrons. The study of these phe-
nomena requires the development of techniques that go degextitional Feynman perturbation
theory. Here we concentrate on the interplay of two of thiegce gauge theory and effective
chiral models.

The presentation is meant to be introductory. The aim is twige a qualitative picture
of how the symmetries of this theory work together rathenttapresent detailed methods for
calculation. In this first section we briefly review why thiiebry is so compelling.

1.1 Why quarks

Although an isolated quark has not been seen, we have ayafieeasons to believe in the
reality of quarks as the basis for this next layer of matténstFquarks provide a rather elegant
explanation of certain regularities in low energy hadra@pectroscopy. Indeed, it was the suc-
cesses of the eightfold walyl[1] which originally motivatdu tquark model. Two “flavors’ of
low mass quarks lie at the heart of isospin symmetry in nugegsics. Adding the somewhat
heavier “strange” quark gives the celebrated multipleicitire described by representations of
the groupSU(3).

Second, the large cross sections observed in deeply ireleston-hadron scattering point
to structure within the proton at distance scales of lesa fitia'® centimeters, whereas the
overall proton electromagnetic radius is of ordér '3 centimeter<[2]. Furthermore, the angular
dependences observed in these experiments indicate thatnaerlying charged constituents
carry half-integer spin.

Yet a further piece of evidence for compositeness lies inetkgtations of the low-lying
hadrons. Particles differing in angular momentum fall hgiato place along the famous “Regge
trajectories” [8]. Families of states group together astallexcitations of an underlying ex-
tended system. The sustained rising of these trajectorissimcreasing angular momentum
points toward strong long-range forces between the coesiis.

Finally, the idea of quarks became incontrovertible witk tliscovery of heavier quark
species beyond the first three. The intricate spectrosdapg@harmonium and upsilon families
is admirably explained via potential models for non-refatic bound states. These systems rep-
resent what are sometimes thought of as the “hydrogen atofrfémentary particle physics.
The fine details of their structure provides a major testimgugd for quantitative predictions
from lattice techniques.

2f you prefer not to confuse this with the 4000 Angstroms ¢gbiof color, you could regard this as an acronym for
Quark Confining Dynamics.
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1.2 Gluons and confinement

Despite its successes, the quark picture raises a variptyzafes. For the model to work so well,
the constituents should not interact so strongly that thege their identity. Indeed, the question
arises whether it is possible to have objects display pdiatbehavior in a strongly interacting
theory. The phenomenon of asymptotic freedom, discussetbie detail later, turns out to be
crucial to realizing this picture.

Perhaps the most peculiar aspect of the theory relates tath¢hat an isolated quark has
never been observed. These basic constituents of mattetdopiously appear as free particles
emerging from high energy collisions. This is in marked casit to the empirical observation
in hadronic physics that anything which can be created velll ®nly phenomena prevented by
known symmetries are prevented. The difficulty in produajngrks has led to the concept of a
principle of exact confinement. Indeed, it may be simpleraweeha constituent which can never
be produced than an approximate imprisonment relying onreraturally small suppression
factor. This is particularly true in a theory like the stroimgeractions, which is devoid of any
large dimensionless parameters.

But how can one ascribe any reality to an object which cane@rbduced? Is this just some
sort of mathematical trick? Remarkably, gauge theoriesn@lly possess a simple physical
mechanism for giving constituents infinite energy when widason. In this picture a quark-
antiquark pair experiences an attractive force which resiabn-vanishing even for asymptot-
ically large separations. This linearly rising long distarpotential energy forms the basis of
essentially all models of quark confinement.

For a qualitative description of the mechanism, considepting the quarks to a conserved
“gluo-electric” flux. In usual electromagnetism the elexfield lines thus produced spread and
give rise to the inverse square law Coulombic field. If onestanehow eliminate massless fields,
then a Coulombic spreading will no longer be a solution tofikkel equations. If in removing
the massless fields we do not destroy the Gauss law condtrairthe quarks are the sources of
electric fields, the electric lines must form into tubes afigerved flux, schematically illustrated
in Fig.[. These tubes begin and end on the quarks and th@aatitles. The flux tube is meant
to be a real physical object carrying a finite energy per @mgth. This is the storage medium
for the linearly rising inter-quark potential. In some setise reason we cannot have an isolated
quark is the same as the reason that we cannot have a piecamgfvgth only one end. In this
picture a baryon would require a string with three endsek in the group theory of non-Abelian
gauge fields that this peculiar state of affairs is allowed.

Of course a length of real string can break into two, but treshepiece has itself two ends.
In the QCD case a similar phenomenon occurs when there isisuaffenergy in the flux tube to
create a quark-antiquark pair from the vacuum. This is tptalely what happens when a rho
meson decays into two pions.

One model for this phenomenon is a type Il superconductdiagming magnetic monopole
impurities. Because of the Meissner effect [4], a superaotat does not admit magnetic fields.
However, if we force a hypothetical magnetic monopole i $ystems, its lines of magnetic
flux must go somewhere. Here the role of the “gluo-electriak fis played by the magnetic
field, which will bore a tube of normal material through theerconductor until it either ends
on an anti-monopole or it leaves the boundary of the systgm $bich flux tubes have been
experimentally observed in real superconduciars [6].
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Fig. 1. A tube of gluonic flux connects quarks and anti-quafite strength of this string is 14 tons.

Another example of this mechanism occurs in the bag modeH#&te the gluonic fields are
unrestricted in the bag-like interior of a hadron, but ambidden byad hocboundary conditions
from extending outside. In attempting to extract a singlergdrom a proton, one would draw out
a long skinny bag carrying the gluo-electric flux of the quiaakk to the remaining constituents.

The above models may be interesting phenomenologicaltythay are too arbitrary to be
considered as the basis for a fundamental theory. In thaickdor a more elegant approach, the-
orists have been drawn to non-Abelian gauge fields [8]. Thischical system of coupled gluons
begins in analogy with electrodynamics with a set of massleaige fields interacting with the
guarks. Using the freedom of an internal symmetry, the aaiigo includes self-couplings of
the gluons. The bare massless fields are all charged witkeegpeach other. The confinement
conjecture is that this input theory of massless chargetitfss is unstable to a condensation of
the vacuum into a state in which only massive excitationsprapagate. In such a medium the
gluonic flux around the quarks should form into the flux tubesded for linear confinement.
While this has never been proven analytically, strong exiéefrom lattice gauge calculations
indicates that this is indeed a property of these theories.

The confinement phenomenon makes the theory of the strogrgutions qualitatively rather
different from the theories of the electromagnetic and wieades. The fundamental fields of the
Lagrangian do not manifest themselves in the free partmdetsum. Physical particles are all
gauge singlet bound states of the underlying constituéntsarticular, an expansion about the
free field limit is inherently crippled at the outset. Thigisrhaps the prime motivation for the
lattice approach.

In the quark picture, baryons are bound states of three quathus the gauge group should
permit singlets to be formed from three objects in the funeliatal representation. This motivates
the use ofSU(3) as the underlying group of the strong interactions. Thisrimal symmetry
must not be confused with the brokéi/(3) represented in the multiplets of the eightfold way.
Ironically, one of the original motivations for quarks hasanbecome an accidental symmetry,
arising only because three of the quarks are fairly lighte §auge symmetry of importance to
us now is hidden behind the confinement mechanism, whichperyits observation of singlet
states.

The presentation here assumes, perhaps too naively, thattthear interactions can be con-
sidered in isolation from the much weaker effects of elentagnetism, weak interactions, and
gravitation. This does not preclude the possible appbcatf the techniques to the other interac-
tions. Indeed, unification may be crucial for a consisteeotly of the world. To describe physics
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at normal laboratory energies, however, it is only for tmersg interactions that we are forced to
go beyond well-established perturbative methods. Thusarad the discussion around quarks
and gluons.

1.3 Perturbation theory is not enough

The best evidence we have for confinement in a non-Abeliag@theory comes by way of
Wilson’s [9,[10] formulation on a space time lattice. At fitblis prescription seems a little
peculiar because the vacuum is not a crystal. Indeed, erpatalists work daily with highly
relativistic particles and see no deviations from the cardus symmetries of the Lorentz group.
Why, then, have theorists spent so much time describing fieldry on the scaffolding of a
space-time lattice?

The lattice should be thought of as a mathematical trick.rdvjgles a cutoff removing the
ultraviolet infinities so rampant in quantum field theory. @attice it makes no sense to consider
momenta with wavelengths shorter than the lattice spackgywith any regulator, it must be
removed via a renormalization procedure. Physics can anbxiracted in the continuum limit,
where the lattice spacing is taken to zero. As this limit leetg the various bare parameters of
the theory are adjusted while keeping a few physical questiixed at their continuum values.

But infinities and the resulting need for renormalizatioménbeen with us since the begin-
nings of relativistic quantum mechanics. The program fecebdynamics has had immense
success without recourse to discrete space. Why rejedintieeitonored perturbative renormal-
ization procedures in favor of a new cutoff scheme?

Perturbation theory has long been known to have shortcanimguantum field theory. In
a classic paper, Dysoh [11] showed that electrodynamicklamt be analytic in the coupling
around vanishing electric charge. If it were, then one csutdothly continue to a theory where
like charges attract rather than repel. This would allovating large separated regions of charge
to which additional charges would bind with more energy thair rest masses. This would
mean there is no lowest energy state; creating matter-atténmpairs and separating them into
these regions would provide an inexhaustible source ofdnezgy.

The mathematical problems with perturbation theory appkaady in the trivial case of zero
dimensions. Consider the toy path integral

Z(m, g) = /dsb exp(—m?¢? — go*). 1)
Formally expanding and naively exchanging the integrahwhe sum gives
Z(m,g) =Y _cig’ 2
with
(=1 Cm2g? i (21)'(49)!
C; = Z' /dgf)e @ ¢ = m2i+12‘! . (3)

A simple application of Sterling’s approximation showstthdlarge order these coefficients grow
faster than any power. Given any value fgrthere will always be an order in the series where
the terms grow out of control. Note that by scaling the ind@girwe can write

Z(m,g) = 9_1/4/d<b exp(—m?¢* /g7 12 — ¢*). 4)
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This explicitly exposes a branch cut at the origin, yet aapthay of seeing the non analyticity
at vanishing coupling.

Thinking non-perturbatively sometimes reveals somewbgirssing results. For example,
the ¢ theory of massive scalar bosons coupled with a cubic inieraseems to have a sensible
perturbative expansion after renormalization. Howevisrttieory almost certainly doesn’t exist
as a quantum system. This is because when the field becorgegharcubic term in the inter-
action dominates and the theory has no minimum energy stdte.Euclidean path integral is
divergent from the outset since the action is unboundeddimtire and below.

Perhaps even more surprising, it is widely accepted, atthawot proven rigorously, that
a ¢* theory of bosons interacting with a quartic interactioroal®es not have a non-trivial
continuum limit. The expectation here is that with a cutafpiace, the renormalized coupling
will display an upper bound as the bare coupling varies freno 2o infinity. If this upper bound
then decreases to zero as the cutoff is removed, then thenmatiped coupling is driven to zero
and we have a free theory.

This issue is sometimes discussed in terms of what is knovtinea4_andau pole”[[12]. In
non-asymptotically free theories, suchgisand quantum electrodynamics, there is a tendency
for the effective coupling to rise with energy. A simple arsié suggests the possibility of the
coupling diverging at a finite energy. Not allowing this waudbrce the coupling at smaller
energies to zero.

The importance of non-perturbative effects is well undegdtin a class of two dimensional
models that can be solved via a technique known as “bosdmi?dd 3]. This includes massless
two dimensional electrodynamics, i.e. the Schwinger m{itij, the sine-Gordon model [15],
and the Thirring mode[[16]. These solutions exploit a retabte mapping between fermionic
and bosonic fields in two dimensions. This mapping is alseatiorelated to the solution to the
two dimensional Ising model[17].

Returning to the main problem, QCD, we are driven to thedathiy the necessary prevalence
of non-perturbative phenomena in the strong interactiblest predominant of these is confine-
ment, but issues related to chiral symmetry and quantum améchl anomalies, to be discussed
in later sections, are also highly non-perturbative. Theotia at vanishing coupling constant
has free quarks and gluons and bears no resemblance to gr@@dbphysical world of hadrons.
Renormalization group arguments, discussed later, attpliemonstrate essential singularities
when hadronic properties are regarded as functions of thgegeoupling. To go beyond the
diagrammatic approach, one needs a non-perturbativef ctitefein lies the main virtue of the
lattice, which directly eliminates all wavelengths lesarttthe lattice spacing. This occurs before
any expansions or approximations are begun.

This situation contrasts sharply with the great successggamtum electrodynamics, where
perturbation theory is central. Most conventional regaégtion schemes are based on the Feyn-
man expansion; some process is calculated is calculatgdagiematically until a divergence is
met, and the offending diagram is regulated. Since the lmamipling is so small, only a few
terms give good agreement with experiment. While non-pleétive effects are expected, their
magnitude is exponentially suppressed in the inverse ofdlpling.

On a lattice, a field theory becomes mathematically wellreefiand can be studied in various
ways. Conventional perturbation theory, although soméwah&ward in the lattice framework,
should recover all conventional results of other reguéiim schemes. Discrete space-time,
however, allows several alternative approaches. One skthbe strong coupling expansion,
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is straightforward to implement. Remarkably, confinemsrautomatic in the strong coupling
limit because the theory reduces to one of quarks on the esirings with finite energy per unit
length. While this realization of the flux tube picture prde$ insight into how confinement can
work, unfortunately this limit is not the continuum limith€ latter, as we will see later, involves
the weak coupling limit. To study this one can turn to numargimulations, made possible by
the lattice reduction of the path integral to a conventidnallarge many-dimensional integral.

Non-perturbative effects in QCD introduce certain inténgsaspects that are invisible to
perturbation theory. Most famous of these is the posgiilfthaving an explicit CP violating
termin the theory. In the classical theory this involvesiaga total derivative term to the action.
This can be rotated away in the perturbative limit. Howeaenve will discuss extensively later,
in the quantum theory there are dramatic physical consegsen

Non-perturbative effects also raise subtle questions emthaning of quark masses. Or-
dinarily the mass of a particle is correlated with how it pagptes over long distances. This
approach fails due to confinement and the fact that a singlekqrannot be isolated. With mul-
tiple quarks, we will also see that there is a complicatedddpnce of the theory on the number
of quark species. As much of our understanding of quantuchtiieory is based on perturbation
theory, several of these effects remain controversial.

This picture has evolved over many years. One unusual ieshit, depending on the param-
eters of the theory, QCD can spontaneously break CP symnigtry is tied to what is known
as Dashen’s phenomenadn [18], first noted even before theafa€D. In the mid 1970’s, 't
Hooft [19] elucidated the underlying connection betweendhiral anomaly and the topology of
gauge fields. This connection revealed the possible ekflRiviolating term, usually calle@®,
the dependence on which does not apper in perturbative siquen Later Witter [20] used large
gauge group ideas to discuss the behavio®an terms of effective Lagrangians. Refs. [21+-23]
represent a few of the early studies of the effect®odn effective Lagrangians via a mixing
between quark and gluonic operators. The topic continuappear in various contexts; for ex-
ample, Ref.[[24] contains a different approach to undeditanthe behavior of QCD & = =
via the framework of the two-flavor Nambu Jona-Lasinio model

All these issues are crucial to understanding certain stidsl with formulating chiral sym-
metry on the lattice. Much of the picture presented here @iait in the discussion of Refi_[25].
Since then the topic has raised some controversial issugsding the realization that the ambi-
guities in defining quark masses precludes a vanishing ugkauass as a solution to the strong
CP problem([26]. The non-analytic behavior in the numbengafrg species reveals an inconsis-
tency with one of the popular algorithms in lattice gaugetid27]. These conclusions directly
follow from the intricate interplay of the anomaly with cairsymmetry. The fact that some of
these issues remain disputed is much of the motivation ferdview.

The discussion here is based on a few reasonably uncordravassumptions. First, QCD
with Ny light quarks should exist as a field theory and exhibit comfieet in the usual way.
Then we assume the validity of the standard picture of clsiyahmetry breaking involving a
quark condensat@))) # 0. The conventional chiral perturbation theory based on edtjvay
in masses and momenta around the chiral limit should maksesafle assume the usual result
that the anomaly generates a mass forsgh@article and this mass survives the chiral limit.
Throughout we considei is taken small enough to avoid any potential conformal pluise
QCD [28].
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2 Pathintegrals and statistical mechanics

Throughout this review we will be primarily focussed on theckdean path integral formulation
of QCD. This approach to quantum mechanics reveals deepectians with classical statistical
mechanics. Here we will explore this relationship for thraglie case of a non-relativistic particle
in a potential. Starting with a partition function repreieg a path integral on an imaginary time
lattice, we will see how a transfer matrix formalism reduttesproblem to the diagonalization
of an operator in the usual quantum mechanical Hilbert spbsguare integrable functioris [29].
In the continuum limit of the time lattice, we obtain the caital Hamiltonian. Except for our

use of imaginary time, this treatment is identical to thaE@ynman’s early work [30].

2.1 Discretizing time
We begin with the Lagrangian for a free particle of masmoving in potential/ ()
L(z,2) = K(&) + V(z) (5)

whereK (i) = $md? andz is the time derivative of the coordinate Note the unconventional
relative positive sign between the two terms in Eq. (5). Thibecause we formulate the path
integral directly in imaginary time. This improves matheiva convergence, yet we are left
with the usual Hamiltonian for diagonalization.

For a particle traversing a trajectaryt), we have the action

S = /dt L(&(t), x(t)). (6)

This appears in the path integral

7= / (dz)e5. )

Here the integral is over all possible trajectorigg). As it stands, Eq.[{7) is rather poorly
defined. To characterize the possible trajectories wedntte a cutoff in the form of a time
lattice. Putting our system into a temporal box of total g, we divide this interval into
N = % discrete time slices, wheteis the timelike lattice spacing. Associated with it such
slice is a coordinate;. This construction is sketched in Figlide 2. Replacing thnetilerivative
of x with a nearest-neighbor difference, we reduce the acti@nstam

_ 1 Titl — Ty ?
S—@E [2m( - ) + Vi)
The integral in Eq.{7) is now defined as an ordinary integval@ll the coordinates

Z_/<1:[dxi> e 5. (9)

This form for the path integral is precisely in the form of atfieon function for a statistical
system. We have a one dimensional polymer of coordinateEhe action represents the inverse

(8)
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X

Fig. 2. Dividing time into a lattice ofV slices of timestep.

temperature times the Hamiltonian of the thermal analogs iBra special case of a deep result,
a D space-dimensional quantum field theory is equivalent tathssical thermodynamics of a
D + 1 dimensional system. In this example, we have one degreeeddém and is zero; for
the lattice gauge theory of quarks and gluabss three and we work with the classical statistical
mechanics of a four dimensional system.

We will now show that the evaluation of this partition furaetiis equivalent to diagonalizing
a quantum mechanical Hamiltonian obtained from the actiaganonical methods. This is done
with the use of the transfer matrix.

2.2 The transfer matrix

The key to the transfer-matrix analysis is to note that ticalloature of the action permits us to
write the partition function as a matrix product

where the transfer-matrix elements are
— _mer 2 !
Tore = exp [ —3-(@' =) = S(V(@) + V(@) - (12)

The transfer matrix itself is an operator in the Hilbert spa€ square integrable functions with
the standard inner product

W) = / day!* () (). (12)

We introduce the non-normalizable basis statesuch that

) = / dz ¥(x) |1) (13)
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(o' |x) = §(2’ — 2) (14)

1= /d:v |) (] (15)
Acting on the Hilbert space are the canonically conjugatraiprsy andz that satisfy

Elz) = z|x)

[ﬁ’ ‘%] =—i

e M) =z +y). (16)
The operatofl” is defined via its matrix elements

(@' |T|x) = Tor o (17)

whereT,. . is given in Eq.[(IIL). With periodic boundary conditions om aitice of V sites, the
path integral is compactly expressed as as a trace over thertipace

Z=TrTV. (18)
Expressindl” in terms of the basic operatgbsi gives
T_ / dy e~ */(20) (=aV(@)/2 g—iby —aV(&)/2, (19)
To prove this, check that the right hand side has the ap@t@pmatrix elements. The integral

overy is Gaussian and gives

m

5 1/2
T = (ﬂ) ¢V @)/2map/(2m) g=aV (@2, (20)

The connection with the usual quantum mechanical Hamato@ippears in the small lattice
spacing limit. Wher is small, the exponents in the above equation combine to give

1/2 )
T (27m) e—aH+0(a®) (21)
m
with
_ 7 R
H=—+V(z). (22)
2m

This is just the canonical Hamiltonian operator followimgrh our starting Lagrangian.

The procedure for going from a path-integral to a Hilberesp formulation of quantum
mechanics consists of three steps. First define the pathralterith a discrete time lattice.
Then construct the transfer matrix and the Hilbert space loiciwit operates. Finally, take the
logarithm of the transfer matrix and identify the negatiféh®e coefficient of the linear term in
the lattice spacing as the Hamiltonian. Physically, thesfer matrix propagates the system from
one time slice to the next. Such time translations are géekkay the Hamiltonian.

The eigenvalues of the transfer matrix are related to theggrievels of the quantum system.
Denoting thei'th eigenvalue ofl” by \;, the path integral or partition function becomes

Z =Y AN (23)
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As the number of time slices goes to infinity, this expressaominated by the largest eigen-
value)g

Z = X\ x [1 4 O(exp[—N log(Xo/A1)))]- (24)

In statistical mechanics the thermodynamic propertiessyséem follow from this largest eigen-
value. In ordinary quantum mechanics the correspondingneigctor is the lowest eigenstate of
the Hamiltonian. This is the ground state or, in field thetimg, vacuum0). Note that in this
discussion, the connection between imaginary and realisri@vial. Whether the generator of
time translations ig7 oriH, we have the same operator to diagonalize.

In statistical mechanics one is often interested in catimdunctions between the statistical
variables at different points. This corresponds to a study@ Green'’s functions of the cor-
responding field theory. These are obtained upon inserfigmolynomials of the fundamental
variables into the path integral.

An important feature of the path integral is that a typicahga non-differentiable [31, 32].
Consider the discretization of the time derivative

Tit1 — Xy
r~ ———.

(25)
a

The kinetic term in the path integral controls how close thklf are on adjacent sites. Since this
appears as simple Gaussian faetop(—(z;11 — z;)>m/a) we see that

1
§m<x2) = O(1/ma). (26)
This diverges as the lattice spacing goes to zero.

One can obtain the average kinetic energy in other waysx@mele through the use of the
virial theorem or by point splitting. However, the fact thihe typical path is not differentiable
means that one should be cautious about generalizing pgieper classical fields to typical
configurations in a numerical simulation. We will see thatlsquestions naturally arise when
considering the topological properties of gauge fields.

3 Quark fields and Grassmann integration

Of course since we are dealing with a theory of quarks, we aéedional fields to represent
them. There are subtle complications in defining their actio a lattice; we will go into these
in some detail later. For now we just assume the quark figldsid«) are associated with the
sites of the lattice and carry suppressed spinor, flavorcatat indices. Being generic, we take
an action which is a quadratic form in these fieldsD + m)y. Here we formally separate
the kinetic and mass contributions. For the path integralave to integrate ovef and< as
independent Grassmann variables. Thusnd+ on any site anti-commutes with and) on
any other site.

Grassmann integration is defined formally as a linear foncsatisfying a shift symmetry.
Consider a single Grassmann variableGiven any functiory of ¢/, we impose

/dw F() = /dw £+ ) (27)
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wherey is another fixed Grassmann variable. Since the square of eags@®ann variable van-
ishes, we can expandin just two terms

f(¥) = a+b. (28)

Assuming linearity on inserting this into EQ. {27) gives

(/dww)a+(/dwl)b:(/dww)a—i-(/dwl)(ax—i-b). (29)

This immediately tells ug dv» 1 must vanish. The normalization ¢fdy ¢ is still undetermined;
the convention is to take this to be unity. Thus the basic @nasn integral of a single variable
is completely determined by

/duJ p=1 (30)
/duJ 1=0. (31)

Note that the rule for Grassmann integration seems quitdesito what one would want for
differentiation. Indeed, it is natural to define derivagas anticommuting objects that satisfy

d
0 v=1 (32)
d

This is exactly the same rule as for integration. For Grassmariables, integration and dif-
ferentiation are the same thing. It is a convention what wkittaFor the path integral it is
natural to keep the analogy with bosonic fields and refer tegation. On the other hand, for
both fermions and bosons we refer to differentiation whengisources in the path integral as a
route to correlation functions.

We can make changes of variables in a Grassmann integrat@msimilar way to ordinary
integrals. For example, if we want to change frg@nto x = a, the above integration rules

imply
[t =a [ o0 (34)

or simplyd(ay) = dx = %dzp. We see that the primary difference from ordinary integrati
is that the Jacobean is inverted. If we consider a multigiegiral and takee = M with M a
matrix, the transformation generalizes to
1
dx = d(Mv) = ——— di. 35
A particularly important consequence is that we can foryralhluate the Gaussian integrals that
appear in the path integral as

1

= T ~ e (O ). @9

/ By exp (P(D +m))
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The normalization is fixed by the earlier conventions. Nbgg in the path integral formulation
¢ and®) represent independent Grassmann fields; in the next sidrseet will discuss the
connection between these and the canonical anti-commntatiations for fermion creation and
annihilation operators in a quantum mechanical Hilbertepa

In practice Eq.[(36) allows one to replace fermionic intégweth ordinary commuting fields
¢ and¢ as

/ dpdip exp (V(D +m)ip) o / dodg exp (6(D+m)~'9). (37)

This forms the basis for most Monte Carlo algorithms, altffothe intrinsic need to invert the
large matrixD 4+ m makes such simulations extremely computationally intensihis approach
is, however, still much less demanding than any known wayetd directly with the Grassmann
integration in path integrals [33].

3.1 Fermionic transfer matrices

The concept of continuity is lost with Grassman variableBer€ is no meaning to saying that
fermion fields at nearby sites are near each other. This gehidied to the doubling issues
that we will discuss later. But is also raises interestinmplications in relating Hamiltonian
guantum mechanics with the Euclidian formulation invotyipath integrals. Here we will go
into how this connection is made with an extremely simpl® zpace-dimensional model.

Anti-commutation is at the heart of fermionic behavior. §H true in both the Hamiltonian
operator formalism and the Lagrangian path integral, bratiner complementary ways. Starting
with a Hamiltonian approach, if an operatdrcreates a fermion in some normalized state on the
lattice or the continuum, it satisfies the basic relation

[a,a]y = aa’ +ala=1. (38)
This contrasts sharply with the fields in a path integral,ohtall anti-commute
X'y = 0. (39)

The connection between the Hilbert space approach and themagral appears through the
transfer matrix formalism. For bosonic fields this is strafgrward [29], but for fermions certain
subtleties arise related to the doubling issue [34].

To be more precise, consider a single fermion state create¢deboperator.’, and an an-
tiparticle state created by another operdtbr For an extremely simple model, consider the
Hamiltonian

H =m(a'a +b'b). (40)

Herem can be thought of as a “mass” for the particle. What we wanhisxact path integral
expression for the partition function

Z = Tre PH, (41)

Of course, since the Hilbert space generated bydb has only four states, this is trivial to work
out: Z = 1+ 2e~P™ + e~27™, However, we want this in a form that easily generalizes tayna
variables.
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The path integral for fermions uses Grassmann variablesnieluce a pair of such; and
x ', which will be connected to the operator paianda’, and another paig and¢t, for b, bf.
All the Grassmann variables anti-commute. Integratiorr vy of them is determined by the
simple formulas mentioned earlier

/dx1:o; /dxle. (42)

For notational simplicity combine the individual Grassmamariables into spinors

o= (&) v=td 0. @3)
To make things appear still more familiar, introduce a “Riraatrix”

w=(o %) (a2)
and the usual

=1l (45)
Then we have

oy = xTx +¢f¢. (46)

where the minus sign from usirgd rather tharg in definingy is removed by they, factor. The
temporal projection operators

1

Py = 5(1 + ) (47)
arise when one considers the fields at two different location
Xixj + €l = ¢ Prapy + ;P ;. (48)

The indices and; will soon label the ends of a temporal hopping term; this falans the basic
transfer matrix justification for the Wilson projection optor formalism that we will return to
in later sections.

3.2 Normal ordering and path integrals

For a moment ignore the antiparticles and consider some gesgeratorf (a, a') in the Hilbert
space. How is this related to an integration in Grassmanoespdo proceed we need a con-
vention for ordering the operators jh We adopt the usual normal ordering definition with the
notation: f(a,a’) : meaning that creation operators are placed to the left dafuleion opera-
tors, with a minus sign inserted for each exchange. In ttge earather simple formula gives the
trace of the operator as a Grassmann integration

Tr : f(a,af) : = / dxdx XX f(x 1), (49)



Confinement, chiral symmetry, and the lattice 17

To verify, just check that all elements of the complete sebpérators{1,a,a’,a’a} work.
However, this formula is actually much more general; giveetof many Grassmann variables
with one pair associated with each of several fermion stétésimmediately generalizes to the
trace of any normal ordered operator acting in a many ferrHiitivert space.

What about a product of several normal ordered operatorg?|ddds to the introduction of
multiple sets of Grassmann variables and the general famul

™ (: fi(a®,a) :: fala®,a): ... : fu(al,a) )
— dxy dxt .. dxn dxE eXi (xitxn) X5 (x2=x1) | oXp(Xn—Xn—1)
x fi(xi, x1) f2(x3: x2) - - fu (X5 Xn)- (50)

The positive sign ory,, in the first exponential factor indicates the natural ocenice of anti-
periodic boundary conditions; 1.e. we can defige= —x,,. With just one factor, this formula
reduces to Eq[(49). Note how the “time derivative” terms“aree sided;” this is how doubling
is eluded.

This exact relationship provides the starting place fowesting our partition function into a
path integral. The simplicity of our example Hamiltonialowis this to be done exactly at every
stage. First we break “time” into a numhb®rof “slices”

N
Z="Tr (e_'BH/N) : (51)
Now we need normal ordered factors for the above formulattismwe use
ere’a =1 4 (e —1)aa =: ele*—Da'a , (52)

which is true for arbitrarwﬁ This is all the machinery we need to write

Z = / (dipdi))e® (53)
where
S= U, (e PN = 1) + U, Pytbp 1+ Pt (54)
=1

Note how the projection factors ét. automatically appear for handling the reverse convention
of x versust in our field. Expanding the first term gives theSm /N factor appearing in the
Hamiltonian form for the partition function.

It is important to realize that if we consider the action aseaqgalized matrix connecting
fermionic variables

S =y My, (55)

the matrix M is not symmetric. The upper components propagate forwatdrna, and the
lower components backward. Even though our Hamiltoniankexsitian, the matrix appearing
in the corresponding action is not. With further interacipsuch as gauge field effects, the

3The definition of normal ordering givegata)? := 0.
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intermediate fermion contributions to a general path irtbmay not be positive, or even real.
Of course the final partition function, being a trace of a pasidefinite operator, is positive.
Keeping the symmetry between particles and antipartiesslts in a real fermion determinant,
which in turn is positive for an even number of flavors. We Jaller see that some rather
interesting things can happen with an odd number of flavors.

For our simple Hamiltonian, this discussion has been exut. discretization of time adds
no approximations since we could do the normal ordering bydhaln general with spatial
hopping or more complex interactions, the normal orderiag produce extra terms going as
O(1/N?). In this case exact results require a limit of a large numibénme slices, but this is a
limit we need anyway to reach continuum physics.

4 Lattice gauge theory

Lattice gauge theory is currently the dominant path to ustdexding non-perturbative effects.
As formulated by Wilson, the lattice cutoff is quite remadslain preserving many of the basic
ideas of a gauge theory. But just what is a gauge theory ar§wageed, there are many ways
to think of what is meant by this concept.

At the most simplistic level, a Yang-Mills_[8] theory is natly but an embellishment of
electrodynamics with isospin symmetry. Being formulat@@atly in terms of the underlying
gauge group, this is inherent in lattice gauge theory froerstiart.

At a deeper level, a gauge theory is a theory of phases adgoyr@ particle as it passes
through space time. In electrodynamics the interaction ofi@ged particle with the electro-
magnetic field is elegantly described by the wave functioquamng a phase from the gauge
potential. For a particle at rest, this phase is an additiatstenergy proportional to the scalar
potential. The use of group elements on lattice links diyegives this connection; the phase
associated with some world-line is the product of these efegmalong the path in question. For
the Yang-Mills theory the concept of “phase” is generaliieed rotation in the internal symmetry
group.

A gauge theory is also a theory with a local symmetry. Gaugesformations involve ar-
bitrary functions of space time. Indeed, with QCD we haveratependenfU (3) symmetry
at each point of space time. With the Wilson action formwateterms of products of group
elements around closed loops, this symmetry remains exantwith the cutoff in place.

In perturbative discussions, the local symmetry forces uggdixing to remove a formal
infinity coming from integrating over all possible gaugesr Ehe lattice formulation, however,
the use of a compact representation for the group elemerdasibat the integration over all
gauges becomes finite. To study gauge invariant observaidegauge fixing is required to
define the theory. Of course gauge fixing can still be done,maust be introduced to study
more conventional gauge variant quantities such as gluaquark propagators. But physical
guantities should be gauge invariant; so, whether gaugegfis done or not is irrelevant for
their calculation.

One aspect of a continuum gauge theory that the lattice duesspect exact is how a gauge
field transforms under Lorentz transformations. In a cantim theory the basic vector potential
can change under a gauge transformation when transforngitvgebn frames. The lattice, of
course, breaks Lorentz invariance, and thus this conceeslmeaning.
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Here we provide only a brief introduction to the lattice apgrh to a gauge theory. For
more details one should turn to one of the several excelleokdon the subject [36—B9]. We
postpone until later a discussion of issues related tacéaférmions. These are more naturally
understood after exploring some of the peculiarities thagtrhe manifestin any non-perturbative
formulation.

4.1 Link variables

Lattice gauge theory is closely tied to two of the above cptset is a theory of phases and
it exhibits an exact local symmetry. Indeed it is directlyfided in terms of group elements
representing the phases acquired by quarks as they hopdattoeifattice. The basic variables
are phases associated with each link of a four dimensiomalespme lattice. For non-Abelian
case, these variables become an elements of the gauge geoup,; € SU(3) for the strong
interactions. Heré and; denote the sites being conneted by the link in question. \ppress
the group indices to keep the notation under control. Thes¢haee by three unitary matrices
satisfying

Uij = Uyt = (Uyy)". (56)

J

The analogy with continuum vector fields, is
Uijite, = elagodu (57)

Herea represents the lattice spacing apdis the bare coupling considered at the scale of the
cutoff.

In the continuum, a non-trivial gauge field arises when thé(aua four dimensional sense)
of the potential is non zero. This in turn means the phaserfacbund a small closed loop is not
unity. The smallest closed path in the lattice is a “placietir elementary square. Consider the
phase corresponding to one such

Up = U12U23U34U41 (58)

where sites 1 through 4 run around the square in questiom ilmuaitive sense this measures the
flux through this plaquett&fp ~ exp(iea?g2F),,,). This motivates using this quantity to define
an action. For this, look at the real part of the trac&pf

ReTrUp = N — a* g3 F},, s + O(a). (59)

The overall added constant is physically irrelevant. This leads directly to the Wilsgauge
action

S(U) =) ReTrUp. (60)
P

Now we have our gauge variables and an action. To proceedrwéata path integral as an
integral over all fields of the exponentiated action. For @ ¢iioup, there is a natural measure
that we will discuss shortly. Using this measure, the patiégral is

7 = / (dU)e?S (61)
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where(dU) denotes integration over all link variables. This lead$idonventional continuum
expressiorij [ d*z F,, F,, if we choose3 = 2N /g2 for groupSU (V) and use the convention-
ally normalized bare coupling,.

Physical correlation functions are obtained from the patigral as expectation values.
Given an operatoB(U) which depends on the link variables, we have

(B) = % / (dU)B(U)e=55V). (62)
Because of the gauge symmetry, discussed further laterptily makes physical senseffis

invariant under gauge transformations.

4.2 Group Integration

The above path integral involves integration over variabldich are elements of the gauge
group. For this we use a natural measure with a variety of mioperties. Given any function
f(g) of the group elementg € G, the Haar measure is constructed so as to be invariant under
“translation” by an arbitrary fixed element of the group

/ dg f(g9) = / dg f(919) (63)

For a compact group, as for ti#d/ (V) relevant to QCD, this is conventionally normalized so
that [ dg 1 = 1. These simple properties are enough for the measure to heelpidetermined.

An explicit representation for this integration measuralimost never needed, but fairly
straightforward to write down formally. Suppose a generalig element is parameterized by
some variablea, ...c.,. Considering here the casé/ (N ), there aren = N2 — 1 such parame-
ters. Then assume we know some regidim this parameter space that covers the group exactly
once. Define the: dimensional fully antisymmetric tensey, . ;. such that, say; 2., = 1.
Now look at the integral

I=A /R {da} F(g(@)) eir, i Tr (97200 9).-(a~ s, 0)) . (64)

This has the required invariance properties of Eql (63). dioperties of a group imply there
should be a set of parametersdepending orx such thaty; g(@) = g(&’). If we change the
integration variables from to o/, then the epsilon factor generates exactly the Jacobiadedee
for this variable change. The normalization factbis fixed by the above conditiofidg 1 = 1.
Once this is done, we have the invariant measure. The aboveféw the measure will appear
again when we discuss topological issues for gauge fieldedti3(6.

Several interesting properties of the Haar measure arly éasnd. If the group is compact,
the left and right measures are equal

[ dng 1) = / drg f(991) = / drgy / drgs F(g201) = / drg £(9)- (65)

This also shows the measure is unique since any left invam&asure could be used. (For a
non-compact group the normalization can differ.) A simdegument shows

[ a5 = [dgria™) (66)
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For a discrete group, dg is simply a sum over the elements. Fof1) = {¢?|0 < 0 < 27}
the measure is simply an integral over the circle

2
ot = [ 5Eren (67)

For SU(2), group elements take the form
g ={ag+id-&lad +a* =1} (68)
and the measure is

[ s 50 == [ d'a fg)ota® - ) (69

In particular,SU(2) is a 3-sphere.
Some integrals are easily evaluated if we realize that girttegration picks out the “singlet”
part of a function. Thus

/ dgRuy(g) = 0 (70)

whereR(g) is any irreducible matrix representation other than theakione, R = 1. For the
groupSU(3) one can write

/dg Trg Trg' =1 (72)
[ g (11 =1 (72)

from the well known formula8 ® 3 =1®8and3 ®3®3=1®8® 8 @ 10.
A simple integral useful for the strong coupling expans®n i

/ dg gi; (9" = Lijm (73)

The group invariance says we can multiply the indices abliyrby group element on the left or
right. There is only one combination of the indices that aanvise for SU (V)

Ik = 05101/N. (74)

The normalization here is fixed since tracing oygrshould give the identity matrix. Another
integral that has a fairly simple form is

1
/dg Girvir Giaja - - Jinin = JyyCir-in Cironin (75)

This is useful for studying baryons in the strong couplingjmee.
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4.3 Gauge invariance

The action of lattice gauge theory has an exact local synymétre associate an arbitrary group
elementy; with each site of the lattice, the action is unchanged if we replace

Uij — 9; 'Uijg; (76)
One consequence is that no link can have a vacuum expectation[40].
(Uij) = g; {(Uij)g; = 0. (77)

Generalizing this, unless one does some sort of gauge fittiegcorrelation between any two
separated’ matrices is zero. Indeed many things familiar from perttidmetheory often vanish
without gauge fixing, including such fundamental objectg@ark and gluon propagators!

An interesting consequence of gauge invariance is that wéarget to integrate over a tree
of links in calculating any gauge invariant observable [3¥%h axial gauge represents fixing all
links pointing in a given directiof). Note that This sort of gauge fixing allows the reduction of
two dimensional gauge theories to one dimensional spin modie see this, pick the tree to be
a non-intersecting spiral of links starting at the origimaxtending out to the boundary. Links
transverse to this spiral interact exactly as a one dimeas&ystem. This also shows that two
dimensional gauge theories are exactly solvable. Cortstnectransfer matrix along this one
dimensional system. The partition function is the sum ofelgenvalues of this matrix each
raised to the power of the volume of the system.

The trace of any product of link variables around a closeg isadhe famous Wilson loop.
These quantities are by construction gauge invariant amtharnatural observables in the lattice
theory. The well known criterion for confinement is whethe expectation of the Wilson loop
decreases exponentially in the loop area.

More general gauges can be introduced using an analogue éfattheev-Popov factor. If
B(U) is gauge invariant, then

1 1

B) =5 [aw)e*Bw) = [ dw)e S BE)s©)/9w) (78)

wheref(U) is an arbitrary gauge fixing function and

o(U) = / (dg) f (g7 Ussy) (79)

is the integral of the gauge fixing functighover all gauges. A possible gauge fixing scheme
might be to ask that some functiénof the links vanishes. In this case we could tgke: §(h)
and thenp = [(dg)d(h). The integral of a delta function of another function is gésaly a
determinanty = det(dg/0h). A determinant can generally be written as an integral ov@sta
of auxiliary “ghost” fields. Pursuing this yields the usualdeéev-Popov picturé [41].

Gauge fixing in the continuum raises several subtle issuesdfwishes to go beyond per-
turbation theory. Given some gauge fixing condition= 0 and the corresponding = d6(h), it
is desirable that this function vanish only once on any gaargé. Otherwise one should cor-
rect for the over counting due to what are known of as “Gribogies” [42] This turns out to

4Using a tree with small highly-serrated leaves might besdadl “light comb gauge.”
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be non-trivial with most perturbative gauges in practieglsas the Coulomb or Landau gauge.
One of the great virtues of the lattice approach is that byfirotg the gauge, these issues are
sidestepped.

On the lattice gauge fixing is unnecessary and usually nat dame only cares about mea-
suring gauge invariant quantities such as Wilson loops.tiiatdoes have the consequence that
the basic lattice fields are far from continuous. The cotietabetween link variables at dif-
ferent locations vanishes. The locality of the gauge symyrigerally means that there is an
independent symmetry at each space time point. If we conaigaark-antiquark pair located at
different positions, they transform under unrelated sytnie® Thus concepts such as separat-
ing the potential between quarks into singlet and octesmad meaningless unless some gauge
fixing is imposed.

4.4 Numerical simulation

Monte Carlo simulations of lattice gauge theory have comaatminate the subject. Here one
uses the analogy to statistical mechanics to generate imauter memory sets of gauge con-
figurations weighted by the exponentiated action of the patiyral. This is accomplished via a
Markov chain of small weighted changes to a stored systemoMaextrapolations are required
to obtain continuum results; the lattice spacing needs tiaken to zero and the lattice size to
infinity. Also, such simulations become increasingly diffias the quark masses become small;
thus, extrapolations in the quark mass are generally nagedsis not the purpose of this review
to cover these techniques; indeed, the several books medtat the beginning of this section
are readily available. In addition, the proceedings of theual Symposium on Lattice Field
Theory are available on-line for the latest results.

While confinement is natural in the strong coupling limitleétattice theory, we will shortly
see that this is not the region of direct physical interest.this a continuum limit is necessary.
The coupling constant on the lattice represents a bare iogugéfined at a length scale given
by the lattice spacing. Non-Abelian gauge theories pogbesgroperty of asymptotic freedom,
which means that in the short distance limit the effectivegdimg goes to zero. This remarkable
phenomenon allows predictions for the observed scalingwehin deeply inelastic processes.
The way quarks expose themselves in high energy collisi@ssome of the original motivations
for a non-Abelian gauge theory of the strong interactions.

In addition to enabling perturbative calculations at higkmgies, the consequences of asymp-
totic freedom are crucial for numerical studies via theidatapproach. As the lattice spacing
goes to zero, the bare coupling must be taken to zero in a wedrmhined way. Because of
asymptotic freedom, we know precisely how to adjust our &itien parameters to take take the
continuum limit!

In terms of the statistical analogy, the decreasing cogphikes us away from high temper-
ature and towards the low temperature regime. Along the wggneral statistical system might
undergo dramatic changes in structure if phase transiiomgresent. Such qualitative shifts in
the physical characteristics of a system can only hampéagkeof demonstrating confinementin
the non-Abelian theory. Early Monte Carlo studies of l&tiauge theory have provided strong
evidence that such troublesome transitions are avoiddeeistandard four dimension8&l(3)
gauge theory of the nuclear for¢e [43].

Although the ultimate goal of lattice simulations is to pideza quantitative understanding of
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continuum hadronic physics, along the way many interegtirepomena arise which are peculiar
to the lattice. Non-trivial phase structure does occur irmgety of models, some of which do
not correspond to any continuum field theory. We should rebegrthat when the cutoff is still
in place, the lattice formulation is highly non-unique. Graa always add additional terms that
vanish in the continuum limit. In this way spurious trarwits might be alternatively introduced
or removed. Physical results require going to the continlionit

4.5 Order parameters

Formally lattice gauge theory is like a classical statétinechanical spin system. The splig

are elements of a gauge groGp They are located on the bonds of our lattice. Can this system
become “ferromagnetic”? Indeed, as mentioned above gfiispossible sincé) = 0 follows
from the links themselves not being gauge invariant [40].

But we do expect some sort of ordering to occur in thg) theory. If this is to describe
physical photons, there should be a phase with masslessi@artStrong coupling expansions
show that for large coupling this theory has a mass gap [9)isEhphase transition is expected,
and has been observed in numerical simulations [44]. Bx&otlv this ordering occurs remains
somewhat mysterious; indeed, although people often look fanechanism for confinement,”
it might be interesting to rephrase this question to “howstméheory such as electromagnetism
avoid confinement.”

The standard order parameter for gauge theories and cordiniénvolves the Wilson loop
mentioned above. This is the trace of the product of linkalggs multiplied around a closed
loop in space-time. If the expectation of such a loop dee®asponentially with the area of
the loop, we say the theory obeys an area law and is confinimgth®other hand, a decrease
only as the perimeter indicates an unconfined theory. Thdsrgparameter by nature is non-
local; it cannot be measured without involving arbitratdyng distance correlations. The lattice
approach is well known to give the area law in the strong daggimit of the pure gauge theory.
Unfortunately, with dynamical quarks this ceases to be &ulsgeasure of confinement. As a
loop becomes large, it will be screened dynamically by gsidgopping” out of the vacuum.
Thus we always will have a perimeter law.

Another approach to understanding the confinement phaseigetthe mass gap. As long as
the quarks themselves are massive, a confining theory skoatdin no physical massless par-
ticles. All mesons, glueballs, and nucleons are expectgditomasses through the dimensional
transmutation phenomenon discussed later. As with thelangdhe presence of a mass gap is
easily demonstrated for the strong coupling limit of thegpgiue theory.

If the quarks are massless, this definition also becomestadiy. In this case we expect
spontaneous breaking of chiral symmetry, also discusseghsixely later. This gives rise to
pions as massless Goldstone bosons. To distinguish thitisit from the unconfined theory,
one could consider the number of massless particles in teetrspn by looking at how the
“vacuum” energy depends on temperature using the SteféarBann law. WithN; flavors we
haveNJ% —1 massless scalar Goldstone bosons. On the other hand, weyauge grousU (N)
not to confine, we would expedf? — 1 massless vector gauge bosons piysmassless quarks,
all of which have two degrees of freedom.
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5 Renormalization and the continuum limit

Asymptotic freedom is a signature feature of the theory efdtrong interactions. Interactions
between quarks decrease at very short distances. From ori@paiew this allows perturbative
calculations in the high energy limit, and this has becomiadnstry in itself. But the concept is
also of extreme importance to lattice gauge theory. Indeggmptotic freedom tells us precisely
how to take the continuum limit. This chapter reviews theoremalization group and this crucial
connection to the lattice. When fermions are present thagses must also be renormalized, but
the renormalization group also tells us exactly how to ds.thi

5.1 Coupling constant renormalization

At the level of tree Feynman diagrams, relativistic quanfietd theory is well defined and
requires no renormalization. However as soon as loop diorecare encountered, divergences
appear and must be removed by a regularization scheme. brajehe theory then depends
on some cutoff, which is to be removed with a simultaneoussidjent of the bare parameters
while keeping physical quantities finite.

For example, consider a lattice cutoff with spacing he proton mass:,, is a finite physical
guantity, and on the lattice it will be some, a priori unkngWiumction of the cutoffa, the bare
gauge coupling and the bare quark masses. For the quark-less theory we useilthe lightest
glueball mass for this purpose. The basic idea is to hold gimghysical properties constant to
determine how the coupling and quark masses behave asttbe fgacing is reduced.

As the quark masses go to zero the proton mass is expectadarénite; thus, to simplify
the discussion, temporarily ignore the quark masses. Tousider the proton mass as a func-
tion of the gauge coupling and the cutoff, (g, a). Holding this constant as the cutoff varies
determines how depends om. This is the basic renormalization group equation

d dg

a%mp(g(a), a)=0= a%mp(a,g) +a (%> aggmp(a,g). (80)

By dimensional analysis, the proton mass should scate asat fixed bare coupling. Thus we
know that

0
a%mp(g, a) = —myp(g,a) (81)
The “renormalization group function”

ZQ@ZM 82
Blg) =ay. T iny(g.0) (82)

characterizes how the bare coupling is to be varied for tiirmoum limit.
As renormalization is not needed until quantum loops ar@eniered3(g) vanishes ag?
when the coupling goes to zero. Define perturbative coefffisirom the asymptotic series

B(g) = Bog® + Prg° + ... (83)
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Politzer [45] and Gross and Wilczek [46/47] first calculatied coefficients, for non-Abelian
gauge theories, with the result

1
50_167#(

where the gauge group BU(N) and N, denotes the number of fermionic species. As long as
Ny < 11N/2 this coefficient is positive. Assuming we can reach a regibene this first term
dominates, decreasing the cutoff corresponds to decge#isncoupling. This is the heart of
asymptotic freedom, which tells us that the continuum liofitanishing lattice spacing requires
taking a limit towards vanishing coupling. The two loop ailmition to Eq. [8B) is also known
[48/49]

11N/3 — 2N;/3) (84)

2
B = (1 6‘;2) (34N?/3 —10NN;/3 — Ny(N* —1)/N) . (85)

In general the functio(g) depends on the regularization scheme in use. For example it
might depend on what physical property is held fixed as wellletails of how the cutoff is
imposed. Remarkably, however, these first two coefficiergsiaiversal. Consider two different
schemes each defining a bare coupling as a function of théfcsay g(a) andg’(a). The
expansion for one in terms of the other will involve all oddyaos of the coupling. In the weak
coupling limit each formulation should reduce to the cleakivang-Mills theory, and thus to
lowest order they should agree

g =g+cg’ +0(g°) (86)
We can now calculate the new renormalization group function
dg’  0g'

By = “da = g (9)
= (1+3cg®)(Bog® + B1g”) + O(g°)
= Bog” + B1g” +0(g°) (87)

Through ordeg’3 the dependence on the parameteancels. This, however, does not continue
to higher orders, where alternate definitions of the betatfan generally differ. We will later
comment further on this non-uniqueness.

The renormalization group function determines how rapilé/coupling decreases with cut-
off. Separating variables

dg
d(l = 88
(log(a)) Bog?® + B1g° + O(g7) o)
allows integration to obtain
1 ﬂl 2
1 AN)=———+51 + 0 89

whereA is an integration constant. This immediately shows thatfdktece spacing decreases
exponentially in the inverse coupling

1 _ 2 2
a= e /2609”4 '81/'8“(14—0(92)). (90)
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Remarkably, although the discussion began with the betetibmobtained in perturbation the-
ory, the right hand side of E4._(P0) has an essential singykrvanishing coupling. The renor-
malization group provides non-perturbative informatioomfi a perturbative result.

Dropping the logarithmic corrections, the coupling as acfion of the cutoff reduces to

9 1
~ 2By log(1/Aa)

showing the asymptotic freedom result that the bare coggoes to zero logarithmically with
the lattice spacing in the continuum limit.

The integration constarit is defined from the bare charge and in a particular cutoffreghe
Its precise numerical value will depend on details, but atheescheme is chosen, it is fixed
relative to the scale of the quantity used define the physizale. In the above discussion this
was the proton mass. The existence of a scheme dependenbe seen by considering two
different bare couplings as related in Hq.l(86). The refelietween the integration constants is

g (91)

- C
2680

The massn of a physical particle, perhaps the proton used above, isexiad to an inverse
correlation length in the statistical analogue of the teteasuring this correlation length in
lattice units, we can consider the dimensionless comhingti= 1/am. For the continuum
limit, we want this correlation length to diverge. Multiphg Eq. [90) by the mass tells us how
this divergence depends on the lattice coupling

log(A’/A) (92)

ma = ¢t = Zen 1200 gm0 (11 0(g%)), (93)

Conversely, if we know how a correlation lengtof the statistical system diverges as the cou-
pling goes to zero, we can read off the particle mass in uhitsas the coefficient of the behavior
in this equation. This exemplifies the close connection betwdiverging correlation lengths in
a statistical system and the continuum limit of the corresjiag quantum field theory.

We emphasize again the exponential dependence on thedroarrgling appearing in EQ.(P3).
This is a function that is highly non-analytic at the origirhis demonstrates quite dramatically
that QCD cannot be fully described by perturbation theory.

5.2 A parameter free theory

This discussion brings us to the remarkable conclusionitpatring the quark masses, the strong
interactions have no free parameters. The cutoff is abgdnte g(a), which in turn is absorbed
into the renormalization group dependence. The only reimguimensional parametérserves
to set the scale for all other masses. In the theory conslderisolation, one may select units
such thatA is unity. After such a choice, all physical mass ratios atemeined. Coleman and
Weinberg[[50] have given this process, wherein a dimensgsparameterand a dimensionful
onea manage to “eat” each other, the marvelous name “dimensicar@mutation.”

In the theory including quarks, their masses represertiéuparameters. Indeed, these are
the only parameters in the theory of the strong interactitmthe limit where the quark masses
vanish, referred to as the chiral limit, we return to a zenapeeter theory. In this approximation
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to the physical world, the pion mass is expected to vanishaindimensionless observables
should be uniquely determined. This applies not only to matiss, such as of the rho mass to
the proton, but as well to quantities such as the pion-nuateapling constant, once regarded as
a parameter for a perturbative expansion. As the chiralegmation has been rather successful
in the predictions of current algebra, we expect an exparisithe small quark masses to be a
fairly accurate description of hadronic physics. Given aliative agreement, a fine tuning of
the small quark masses should give the pion its mass and etartpk theory.

The exciting idea of a parameter-free theory is sadly lagkiom most treatments of the
other interactions such as electromagnetism or the weak fdrhere the coupling ~ 1/137
is treated as a parameter. One might optimistically hopettieinclusion of the appropriate
non-perturbative ideas into a unified scheme would ultitgadera and the quark and lepton
masses calculable.

5.3 Including quark masses

Above we concentrated on the flow of the bare coupling as drestihe continuum limit. Of
course with massive quarks in the theory, the bare quark madso renormalized. Here we
extend the above discussion to see how the two bare paranfietertogether to zero in a well
defined way.

Including the mass flow, the renormalization group equatimecome

d
ad_g = B(g9) = Bog® + B1g° + ... + non-perturbative
a
d
ad_m =m~y(g) = m(y9® + 119" + ...) + non-perturbative. (94)
a

Now we have three perturbative coefficierits (1, 7o which are scheme independent and
known [45+49, 511, 52]. FafU (3) we have

By = %fgf/i% = 0654365977  (Nj=1)
8 = % =.0036091343 (Ny=1) (95)
o = # = 0506605918

For simplicity we work withN; degenerate quarks, although this is easily generalizeleto t
non-degenerate case. It is important to recognize that iba-perturbative” parts fall faster
than any power off asg — 0. As we will discuss later, unlike the perturbative piecés t
non-perturbative contributions tpin general need not be proportional to the quark mass.

As with the pure gauge theory discussed earlier, these iegsare easily solved to show

0= %6—1/2,30929—,31/,3[2)(1 + 0(92))
m = Mg"/%(1+ 0(g?)). (96)

The quantities\ and M are “integration constants” for the renormalization graguations.
Rewriting these relations gives the coupling and mass flavércontinuum limitz — 0

9 1

~ log(1/Aa) 0 asymptotic freedom

g
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m(a)

9(a)

Fig. 3. In the continuum limit both the bare coupling and brasess for QCD flow to zero.

1 ~Yo/Bo
me (i) oD

Here A is usually regarded as the “QCD scale” ahflas the “renormalized quark mass.” The
resulting flow is sketched in Fifi] 3.

The rate of this flow to the origin is tied to the renormalimatgroup constants, which can
be obtained from the inverted equations

6*1/250929*51/55

A = lim (98)
a—0 a
M = 111—>mo mg_W/'BU. (99)

Of course, as discussed farabove, the specific numerical values of these parameteendem
the detailed renormalization scheme.

Defining8(g) andv(g) is most naturally done by fixing some physical quantities aajdst-
ing the bare parameters as the cutoff is removed. Becausmfihement we can’t use the quark
mass itself, but we can select several physical particlesesas; (g, m, a) to hold fixed. This
leads to the constraint

dm;(g, m,a) om;

Bmi 6ml
= 0=, B+ Gmy(e) g (100)

For simplicity, continue to work with degenerate quarks afssyn. Then we have two bare
parametergg, m), and we need to fix two quantiti&Natural candidates are the lightest baryon
mass, denoted here as,, and the lightest boson mass;. Then we can explicitly rearrange
these relations to obtain a somewhat formal but explicitesgion for the renormalization group
functions

B( ) _ aam" omyp . aamp Omax Omp dm, _ Omg omyp
9 da Om da Om dg Om dg Om

5Actually there is a third parameter related to CP consematHere we assume CP is a good symmetry and ignore
this complication. This issue will be further discussedaitet sections.
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_ Omg Omp _  Omp Omg Omp Omy _ Omy Omyp
’7(9)_ (a da Og a da  Og om  0Og om  Og ' (101)

Note that this particular definition includes all pertuitb@atand non-perturbative effects. In addi-
tion, this approach avoids any need for gauge fixing.

Once givenn,, m,, and a renormalization scheme, then the dependence of ta@ammm-
eters on the cutoff is completely fixed. The physical massesrapped onto the integration
constants

A =A(mp,my) (102)
M = M(mp, my). (103)

Formally these relations can be inverted to express theenass functions of the integration
constantsyn; = m;(A, M). Straightforward dimensional analysis tells us that thesea must
take the form

As we will discuss in more detail in later sections, for theltirflavor theory we expect the
pions to be Goldstone bosons with? ~ m,. This tells us that the above function for the
pion should exhibit a square root singularjty(z) ~ z'/2. This relation removes any additive
ambiguity in defining the renormalized quark mdgs As will be discussed in more detail later,
this conclusion does not persist if the lightest quark bezpnon-degenerate.

5.4 Which beta function?

Thus far our discussion of the renormalization group has regerms of the bare charge with a
cutoffin place. Thisis the natural procedure in latticeggtheory; however, there are alternative
approaches to the renormalization group that are freques#d in the continuum theory. We
now make some comments on connection between the latticdharmdntinuum approaches.

An important issue is that there are many different ways fondea renormalized coupling;
it should first of all be an observable that remains finite En¢bntinuum limit

lim g (. a, 9(a)) = gr(n)- (105)

Here 11 is a dimensionful energy scale introduced to define the realized coupling. The
subscriptr is added to distinguish this coupling from the bare one. Fstysbative purposes
one might use a renormalized three-gluon vertex in a pdatigauge and with all legs at a given
scale of momentum proportional o But many alternatives are possible; for example, one
might use as an observable the force between two quarksaxasiem1 / ..

Secondly, to be properly called a renormalization of thessitaal couplingg, should be
normalized such that it reduces to the bare coupling in loweater perturbation theory for the
cutoff theory

gr(p,a,9) = g+ O(g°). (106)
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Beyond this, the definition of,. is totally arbitrary. In particular, given any physical ebpgable
H defined at scalg and satisfying a perturbative expansion

H(p,a,9) = ho + hig® + O(g") (107)
we can define a corresponding renormalized coupling

9% (1) = (H(p) = ho) /1. (108)

As the energy scale goes to infinity, this renormalized obatgould go to zero. But with a
different observable, we will generally obtain a differ&mctional behavior for this flow. From
this flow of the renormalized charge we can define a renorexhlieta function

dgr (1)
o

We now draw a remarkable connection between the renorndatiez@ormalization group
function .- (g,) and the function3(g) defined earlier for the bare coupling. When the cutoff
is still in place, the renormalized coupling is a functiontbé scaleu of the observable, the
cutoff a, and the bare coupling. Since we are working with dimensionless couplingscan
depend directly om anda only through their product. This simple application of dims@nal
analysis implies

Br:_,u

(109)

_ Ogr

gy
a

da |, =P (110)

g

Now, in the continuum limit as we taketo zero and adjusgt appropriatelyg, should become a
function of the physical scale alone. Indeed, we could uge(u) itself as the physical quantity
to hold fixed for the continuum limit. Then we obtain

dgr  Ogr Og
as + 99 ag = 0. (1112)
Using this in an analysis similar to that in EQ.{87), we find
Br(gr) = Bogy + Prg; + O(gy). (112)

Where3, and3; are the same coefficients that appear in Eql. (83). Both thermealized and
the bares3 functions have the same first two coefficients in their pbudtive expansions. Indeed,
it was through consideration of the renormalized couplivag 8, and3; were first calculated.

It is important to reiterate the considerable arbitrarinesdefining both the bare and the
renormalized couplings. Far from the continuum there needdsimple relationship between
different formulations. Once one leaves the perturbatggan, even such things as zeros in the
S functions are not universal. For one extreme example, ltasvad to force the beta function to
consist of only the first two terms. In this case, as long/ass small enough that; > 0, there is
explicitly no other zero of the beta function excepgyat 0. On the other hand, one might think
it natural to define the coupling from the force between twar§s. When dynamical quarks are
present, at large distances this falls exponentially withpion mass at large distances. In this
case the beta function must have another zero in the viaifishere the screening sets in. Thus,
even the existence of zeros in the beta function is schemendiept. The only exception to this
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is if a zero occurs in a region of small enough coupling thatysbation theory can be trusted.
This has been conjectured to happen for a sufficient numtfaairs [28].

The perturbative expansion gf; has important experimental consequences. If, as expected,
the continuum limit is taken at vanishing bare coupling dmlrienormalized coupling is small
enough that the first terms in E._{112) dominate, then therrealized coupling will be driven to
zero logarithmically as its defining scalegoes to infinity. Not only does the bare coupling van-
ish, but the effective renormalized coupling becomes ety weak at short distances. This is
the physical implication of asymptotic freedom; phenomiemalving only short-distance effects
may be accurately described with a perturbative expansitdteed, asymptotically free gauge
theories were first invoked for the strong interactions agxlanation of the apparently free
parton behavior manifested in the structure functions@ased with deeply inelastic scattering
of leptons from hadrons.

The dependence of the integration constartn the details of the renormalization scheme
carries over to the continuum renormalization group as.v@&llen a particular definition of the
renormalized coupling, (1), its behavior ag goes to zero will involve a scal&, in analogy
to the scale in the bare coupling. Hasenfratz and HaserBats4] were the first to perform
the necessary one loop calculations to relatbom the Wilson lattice gauge theory with,.
defined from the three-gluon vertex in the Feynman gauge éhdal/legs carrying momentum
2. They found

A, (575 SU(2)
A (83.5 SU(3)) (113)

for the pure gauge theory. Note that not onlj\ischeme dependent, but that different definitions
can vary by rather large factors. The original calculatibthese numbers was rather tedious.
They have been verified with calculationally more efficieutiniques based on quantum fluctu-
ations around a slowly varying classical background fiek].[5

5.5 Flows and irrelevant operators

We now briefly discuss another way of looking at the renoreadidn group as relating theories
with different lattice spacings. Given one lattice theanye could imagine generating another
with a larger lattice spacing by integrating over all linkecept those on some super lattice.
While this is conceptually possible, to do it exactly in mtran one dimension will generate an
infinite number of couplings. If we could keep track of sudte procedure would be “exact,”
but in reality we usually need some truncation. Continum@tegrate out degrees of freedom,
the couplings flow and might reach some “fixed point” in thifiriite space. With multiple
couplings, there can be an attractive “sheet” towards wbdalplings flow, and then they might
continue to flow towards a fixed point, as sketched in Eig. 4théf fixed point has only one
attractive direction, then two different models that flow&wds that same fixed point will have
the same physics in the large distance limit. This is the ephof universalityj.e. exponents
are the same for all models with the same attractor.

Some hints on this process come from dimensional analykisyuagh, in ignoring non-
perturbative effects that might occur at strong couplihg following arguments are not rigorous.
In d dimensions a conventional scalar field has dimensiodg of- . Thus the coupling constant

A in an interaction of form[ d?z A¢™ has dimensions af/¢—"“z*. On a lattice of spacing,
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Fig. 4. A generic renormalization group flow. In general thésurs in an infinite dimensional space.

the natural unit of dimension is the inverse lattice spaciftgus without any special tuning, the
renormalized coupling at some fixed physical scale wouldnadly run as)\ ~ a4, As

long as the exponent in this expression is positive, i.e.

S 2d
n>_—_
—d-2

we expect the coupling to become “irrelevant” in the cortimuimit. The fixed point is driven
towards zero in the corresponding directiond Bxceeds four, this is the case for all interactions.
(We ignoreg? in 6 dimensions because of stability problems.) This suigdkat four dimensions

is a critical case, with mean field theory giving the right kifative critical behavior for all larger
dimensions. In four dimensions we have several possibtetraalizable” couplings which are
dimensionless, suggesting logarithmic corrections testhmple dimensional arguments. Indeed,
four-dimensional non-Abelian gauge theories display #yatch a logarithmic flow; this is
asymptotic freedom.

This simple dimensional argument applied to the mass teggests it would flow towards
infinity in all dimensions. For a conventional phase traasit something must be tuned to a
critical point. In statistical mechanics this is the tengiare. In field theory language we usually
remap this onto a tuning of the bare mass term, saying thatahsition occurs as bare masses
go through zero. For a scalar theory this tuning for a continlimit seems unnatural in and is
one of the unsatisfying features of the standard modelirdyparticle physicists to try to unravel
how the Higg's mechanism really works.

In non-Abelian gauge theories with multiple massless fensj chiral symmetry protects
the mass from renormalization, avoiding any special tuningeed, as we have discussed, be-
cause of dimensional transmutation, all dimensionlesamaters in the continuum limit are
completely determined by the basic structure of the inltegrangian, without any continuous
parameters to tune. In the limit of vanishing pion mass, tieto nucleon mass ratio should
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be determined from first principles; it is the goal of lattgauge theory to calculate just such
numbers.

As we go below four dimensions, this dimensional argumeggests that several couplings
can become “relevant,” requiring the renormalization grpicture of flow towards a non-trivial
fixed point. Above two dimensions the finite number of rendizadle couplings corresponds to
the renormalization group argument for a finite number ofivarsality classes,” corresponding
to different basic symmetries.

One might imagine dimensionality as being a continuoushjatéde parameter. Then just
below four dimensions a renormalizable coupling becomepésrenormalizable” and a new
non-trivial fixed point breaks away from vanishing couplidgar four dimensions this point is
at small coupling, forming the basis for an expansiofind. This has become a major industry,
making remarkably accurate predictions for critical exgrats in three dimensional systerms|[56].

An important consequence of this discussion is that a &aéition is in general highly non-
unique. One can always add irrelevant operators and expebttain the same continuum limit.
Alternatively, one might hope to improve the approach tha&icmum limit by a judicious choice
of the lattice action.

The renormalization group is indeed a rich subject. We haletouched on a few issues that
are particularly valuable for the lattice theory. Perhdygsrhost remarkable result of this section
is how a perturbative analysis of the renormalization-grequation gives rise to information on
the non-perturbative behavior in the particle masses, laibigxd in Eq. [98).

6 Classical gauge fields and topology

The above renormalization group analysis demonstratéstimaperturbative effects are crucial
to understanding the continuum limit of QCD on the latticeowdver, the importance of go-
ing beyond the perturbation expansion for non-Abelian gahgories was dramatically exposed
from a completely different direction with the discoveryrain-trivial classical solutions char-
acterized by an essential singularity at vanishing cogplidere we review these solutions and
some of the interesting consequences for the Dirac operator

We start with some basic definitions to establish notationdntinuum language. Being
ultimately interested in QCD, we concentrate on the gauge@$U (N ). This group hasv2 —1
generators denoted*. They are traceless by N matrices and satisfy the commutation relations

AN = i foBrNT, (114)

involving the group structure functiorf$:#7. By convention, these generators are orthogonalized
and normalized

ﬂMW:%W@ (115)

For SU(2) the generators would be the spin matriéés= c*/2, and the generators the three
indexed antisymmetric tensgf®7 = 47,

Associated with the each of the generatdtsis a gauge potentialj;(z). For the classical
theory, assume these are differentiable functions of sfi@meeand vanish rapidly at infinity. For
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the quantum theory this assumption of differentiabilityaisubtle issue to which we will later
return. The notation simplifies a bit by defining a matrix \edield A

A, = AN (116)
The covariant derivative is a matrix valued differentiatogtor defined as
D, =0, +igA,. (117)

Given the gauge potential, the corresponding matrix vafigdd strength is
F, = _?Z[D#, D,) = 0,4, — 0,A, +iglA,, A)) = DA, — D, A,. (118)

We define the dual field strength as

F,, = %EMUPUFPU (119)
with €., being the antisymmetric tensor withys, = 1.
In terms of the field strength, the classical Yang-Mills astis
S = % / d'z Tr F F, (120)
and the classical equations of motion are
D, F,, =0. (121)

This defines the classical Yang-Mills theory.
The Jacobi identity

[A,[B,C]] +[B,[C,A]| +[C,[A,B]] = 0 (122)
applied to the covariant derivative implies that
E,ul/paDl/Fpa' =0 (123)

or D#FW = 0. This immediately implies that any self-dual or anti-sefal field withF = + F'
automatically satisfies the classical equations of moti®his is an interesting relation since
F = Fis linear in derivatives of the gauge potential. This leasls tmultitude of known
solutions|[[57], but here we concentrate on just the simplesttrivial one.

This theory is, after all, a gauge theory and therefore hasa symmetry. We previously
discussed this in the lattice context. There it was origynalotivated by the continuum gauge
transformations of the classical theory, which we now neviéet 4(x) be a space dependent
element of SU(N) in the fundamental representation. Assume thé differentiable. Now
define the gauge transformed field

AP — htA, L — ghT(a,th). (124)
This transformation takes a simple form for the covariamivd¢ve

hiD,h =DM =09, +igA]. (125)
Similarly for the field strength we have

F%) = hiF,,h. (126)

Thus the action is invariant under this transformatigfd) = S(A().
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6.1 Surface terms

A remarkable feature of this formalism is that the combimafit FF is a total derivative. To
see this first construct

S
FF = —€40(20,A, +igA,A,) (20,45 + igA,A,)

2
= %e,wp(, (40,A4,0,A5 + 4ig(0,A))ApAs — AL AVALAL) . (127)
If we take a trace of this quantity, the last term will drop due to cyclicity. Thus
TrFF = 20u6u0p0 Tt (4,0, A0 +igAL Ay Ay) = 20, K, (128)
where we define
K, = €upoTr (AL0,A + 2igAL AL AL) . (129)

Note that althougHr FF is gauge invariant, this is not true féf,,.
Being a total derivative, the integral of this quantity

1 -
/ dz 5TfFF (130)

would vanish if we ignore surface terms. What is remarkablthat there exist finite action
gauge configurations for which this does not vanish evenghdte field strengths all go to zero
rapidly at infinity. This is because the gauge fielis that appear explicitly in the curret,,
need not necessarily vanish as rapidlygs.

These surface terms are closely tied to the topology of thggaotential at large distances.
As we want the field strengths to go to zero at infinity, the pti&é should approach a pure gauge
form A, — Zth'8,h. In this case

Ky = o T (110, 1) (010, ) (10, ). (131)
g

Note the similarity of this form to that for the group measimr&g. (64). Indeed, it is invariant if
we takeh — h'h with b’ being a constant group element. The surface at infinity islt@pcally

a three dimensional sphef. If we concentrate or5U (2), this is the same as the topology
of the group space. For larger groups we can restrith an SU(2) subgroup and proceed
similarly. Thus the integral of<,, over the surface reduces to the integrahodver a sphere
with the invariant group measure. This can give a non-vamisbontribution if the mapping of

h onto the sphere at infinity covers the entire group in a niwiatrmanner. Mathematically,
one can map th#&; of infinite space onto th&'s of group space an integer number of times, i.e.
II3(SU(2)) = Z. Thus we have

/ d*z %TrFF x v (132)

wherev is an integer describing the number of tinigs:) wraps around the group ascovers
the sphere at infinity. The normalization involves the stefarea of a three dimensional sphere
and can be worked out with the result

8r2y
9%

/ d*z %TrFF = (133)
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For groups larger thaiU (2) one can defornk to lie in an SU(2) subgroup, and thus this
quantization of the surface term applies to & (V).

If we were to place such a configuration into the path intefathe quantum theory, we
might expect a suppression of these effects by a factexpf—872/g?). This is clearly non-
perturbative, however this factor strongly underestim#te importance of topological effects.
The problem is that we only need to excite non-trivial fieldemthe quantum mechanical vac-
uum, not the classical one. The correct suppression is thebggonential in the inverse coupling
squared, but the coefficient in the exponent can be detedrioen asymptotic freedom and
dimensional transmutation. We will return to this point imbSectiorn 913.

The combinatiorilr F F is formally a dimension four operator, the same as the basige
theory action densitffr F'F'. This naturally leads to the question of what would happemeif
consider a new action which also includes this parity odehteClassically it does nothing since
it reduces to the surface term described above. Howevetguamechanically this is no longer
the case. As we will discuss extensively later, the physid@@D depends quite non-trivially
on such a term. An interesting feature of this new term fafldvom the quantization of the
resulting surface term. Because of the above quantizatidrea imaginary factor in the path
integral, physics is periodic in the coeﬁicient%fﬁFF. Although discussing the consequences
directly with such a term in the action is traditional, weMdllow a somewhat different path in
later sections and introduce this physics through its &ffen fermions.

6.2 An explicit solution

To demonstrate that non-trivial winding solutions indegib specialize t&SU(2) and find an
explicit example. To start, consider the positivity of therm of /" + F'

0< /d4x (F+F)? = 2/d4x F2j:2/d4:c FF. (134)

This means that the action is bounded below/hit = %TrFF and this bound is reached only if
F = +F. As mentioned earlier, reaching this is sufficient to gut#am solution to the equations
of motion. We will now explicitly construct such a self duardiguration.
Start with a gauge transformation function which is singalathe origin but maps around
the group at a constant radius
t+it-& T,z
h(z,) = = et (135)
( #) /_,TQ |$|
Here we define the four component obj&¢t = {1,:7}. Considering space with the origin
removed, construct the pure gauge field

B, = %Zh*a“h = _?th(TM:vQ — 2, T )|z, (136)

Because this is nothing but a gauge transformation of a kenggauge field, the corresponding
field strength automatically vanishes

8, B, — 0, B, +ig[By, B,] = 0. (137)
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This construction gives a unit winding at infinity. Howevhistgauge field is singular at the
origin where the winding unwraps. If we smooth this singityeait = 0 with a field of form

A, = f(2*)B,. (138)

wheref(0) = 0 and f(co0) = 1, this will remove the unwrapping at the origin and autonedlyc
leave a field configuration with non-trivial winding. The aé&s to find a particulayf (z?) such
that A also gives a self dual field strength and thereby is a soltitidhe equations of motion.

We have set things up symmetrically under space-time ootatabout the origin. This con-
nection withO(4) is convenient in that we only need to verify the self dualityrg a single
direction. Consider this to be the time axis, along whicl dedlity requires

For(Z = 0,) = £Fps(7 = 0,1). (139)

A little algebra gives

Fu = (f =) (0.By — 0,B,) +2f (v, B, — 1, By,). (140)
So along the time axis we have
For — 2"t Fos — (f - fQ)E (141)
gt gt?
Thus the self duality condition reduces to a simple first odierential equation
2f'(2) = £(f = f?). (142)
This is easily solved to give
1
f(z) = T g2t (143)

wherep is an arbitrary constant of integration. To have the functianish at the origin we take
the minus solution. The resulting form for the gauge field
;2
—1T
A, = ———hto,h 144
el (144

is the self dual instanton. The parameterontrols the size of the configuration. Its arbitrary
value is a consequence of the conformal invariance of trssidlal theory. Switching andh !
gives a solution with the opposite winding.

6.3 Zero modes and the Dirac operator

A particularly important and intriguing aspect of the abfieéd configuration is that it supports
an exact zero mode for the classical Dirac operator. We ati#rldiscuss the rigorous connection
between the gauge field winding and the zero modes of the Dpeacator. Here, however, we
will verify this connection explicitly for the above soloti. Thus we look for a spinor field(x)
satisfying

YDy (x) = v (O +igAy) () =0 (145)
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where we insert the gauge field from Eg. (I1.44). The wave fonatiis a spinor in Dirac space
and a doublet ir6U (2) space; i.e. it has 8 components. Similafy.A,, is an 8 by 8 matrix,
with a factor of four from spinor space and a factor of two frima internal gauge symmetry.
The solution entangles all of these indices in a non-trivahmer.

Since we don’t want a singularity i at the origin, it is natural to look for a solution of form

U(z) = p(lz))V (146)

wherep is a scalar function of the four dimensional radius &b a constant vector in spinor
and color space. As before, it is convenient to look for theatgm along the time axis. There
Ap vanishes and we have

- 1 t
—-_°t =z 147
g Z+p? (40
Then the equation of interest reduces to
LN p—_— 1T (148)
Z -z
T 2y 7

The 8 by 8 matrix - ¥ is readily diagonalized giving the eigenvaluges3,1,1,1,1,1,1, 3}.
Only the+3 eigenvalue gives a normalizable solution

botdt
For generak,, this becomes
p2 3/2
v(o) =000 (5253 ) (150)

At large x this goes atr =3 so its square is normalizable. None of the other eigenvaifi€s 7
go to zero fast enough for normalization; thus, the solusamique.

We see the appearance of a direct product of 846(2)'s, one from spin and one from
isospin. As we rotate around the origin, for the large eigam these rotate together as an
overall singlet. The other positive eigenvalues’eff represent the triplet combination while the
negative eigenvalues come from from antiparticle states.

This zero eigenvalue ab is robust under smooth deformations of the gauge field. Ehis i
because the anti-commutation bf with +5 says that all non-zero eigenvalues@foccur in
conjugate pairs. Without bringing in another eigenvalhe isolated one at zero cannot move. In
the next subsection we will demonstrate the general rdsafiffor arbitrary smooth gauge fields
the number of zero modes of the Dirac operator is directhemilsy the topological winding
number.

6.4 The index theorem

We have seen that associated with a particular topologinalh-trivial gauge configuration is a
zero action solution to the Dirac equation. Here we will giveimple derivation of the general
index theorem relating zero modes of the Dirac operator ¢ootrerall topology of the gauge



40 M. Creutz

field. We continue to work directly with the naive continuunrd operator. We assume for
this section that the gauge fields are smooth and diffedgetidVhile this is unlikely to be true
for typical fields in the path integral, the main purpose her® show that robust zero modes
must already exist in the classical theory. We will later e the generalization of these zero
modes to the quantum theory is intimately tied to certaiméua mechanical anomalies crucial
to non-perturbative physics.

The combination of the anti-Hermitean character of thesitas Dirac operatoD = v,D,,
along with its anti-commutation withs; shows that the non-zero eigenvaluedoll occur in
complex conjugate pairs. In particular, if we have

Dly) = A[y) (151)
then we immediately obtain the conjugate eigenvector from
Drys [9h) = =X ys[9). (152)

Sincely) andys|y) have different eigenvalues under the anti-Hermitean dpef2, they must
be orthogonal

(ls i) = 0. (153)

On the other hand, any exact zero eigenmodes need not bel.p&ivethermore, restricted to
the space of zero eigenmodes,and D commute and can be simultaneously diagonalized. The
eigenvalues ofy5 are all either plus or minus unity. Combining all these ideagether gives

a simple method to count the number of zero modes of the Dipacator weighted by their
chirality. In particular we have the relation

v=ng—n_= ’I‘r%—,eDz/A2 (154)

wheren4 denotes the number of zero modes with eigenvalli@indery;. Here the parameter
A is introduced to control the behavior of the trace as thersigieies go to infinity. It can be
thought of as a regulator, although the above equation epieddent of its value.

To proceed, we first write the square of the Dirac operatoeappg in the above exponential

D2 = 92 — g?A2 4 2igA,0, +ig(0,A,) — gcr#,,Fw, (155)

where[v,,v,| = 2i0,,. Expanding Eq.[(134) for the winding number in powers of thege
field, the first non-vanishing term appears in the fourth patéhe Dirac operator. This involves
two powers of the sigma matrices through the relation

Tr V50 uvOpo = 46uupa- (156)

Thus our expression for the winding number becomes
2
v = Tryzel /A = %mﬁey/ N e oo Fu Fog + O(A™6) (157)

whereTr, . refers to the trace over space and color, the trace over therspdex having been
done to give the factor of the antisymmetric tensor. It istthee over the space index that will
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give a divergent factor removing thie # prefactor. Higher order terms go to zero rapidly enough
with A to be ignored.

The factore?”/A” serves to mollify traces over position space. Consider Sometion f(x)
as representing a a diagonal matrix in position spate, 2’) = f(x)d(x — 2’). The formal
trace would bélrM = [ dzM (z,z), but this diverges since it involves a delta function of zero
Writing the delta function in terms of its Fourier transform

2 /A2 d4p in(z—x') —p2 /A2 A4 —(z—2")2A2
e /A 6(&6—.%'/):/(27‘_)461)( JeP /A = 1g2¢ (@=a’)"A%/4 (158)

shows how this “heat kernel” spreads the delta functions Téjulates the desired trace

— A4 4
Tr, f(x) = 162 /d xf(x). (159)
Using this to remove the spatial trace in the above gives #lkkmown relation
g 4 g 4 »
V=0 Trc/d €pvpo Fuv Fpo = Wﬁc/d 2F Fu. (160)

As discussed earlier, this integral involves a total derregthat can be partially integrated into an
integral over spatial infinity that counts the topologica&hding of the gauge field. Thus counting
the zero modes of the Dirac operator in a given configura@niequivalent way to determine
this topology. The equivalence of Ef1. (133) and Eg. [16(ésimdex theorem.

7 Chiral symmetry

Much older a tool than the lattice, ideas based on chiral sgtmmhave historically provided
considerable insight into how the strong interactions wamlparticular, this concept is crucial to
our understanding of why the pion is so much lighter than llwe despite them both being made
of the same quarks. Combining these ideas with the lattisephavided considerable insight
into many non-perturbative issues in QCD. Here we reviewbthsc ideas of chiral symmetry
for the strong interactions. A crucial aspect of this distms is the famous anomaly and its
consequences for thg meson.

The classical Lagrangian for QCD couples left and right lahguark fields only through
mass terms. Thus naively the massless theory has indepgerateserved currents associated
with each handedness. Fd1; massless flavors, this would be an independgtY ;) symmetry
associated with each chirality, giving what is often writi@ terms of axial and vector fields
as anU(Ny)y x U(Ny)a symmetry. As is well known, this full symmetry does not suevi
quantization, being broken to# (Ny)y x SU(Ny)a xU(1) g, where thd/ (1) s represents the
symmetry of baryon number conservation. The only surviarigl symmetries of the massless
guantum theory are non-singlet under flavor symmetry.

This breaking of the classicél(1) axial symmetry is closely tied to the possibility of intro-
ducing into massive QCD a CP violating parameter, usuallgd®. For an extensive review,
see Ref.[[58]. While such a term is allowed from fundamentalgiples, experimentally it ap-
pears to be extremely small. This raises an unresolved @dazkhttempts to unify the strong
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interactions with the weak. Since the weak interactionsidtate CP, why is there no residue of
this remaining in the strong sector below the unificationesza

One goal of this section is to provide a qualitative undeditag of the role of th& param-
eter in meson physics. We concentrate on symmetry alone amebtdattempt to rely on any
specific form for an effective Lagrangian. We build on the mection betwee® and a flavor-
singletZy, symmetry that survives the anomaly. We will see that, wherlightest quarks are
made massive and degenerate, a first order transition must wben® passes through. This
transition is quite generic, but can be avoided under lidh@enditions with one quark consider-
ably lighter than the others. This discussion should alskeniizclear that the sign of the quark
mass is physically relevant for an odd number of flavors. #hisnon-perturbative effect that is
invisible to naive diagrammatic treatments.

Throughout this section we use the language of continuudhttielory. Of course underlying
this we must assume some non-perturbative regulator hasitmgmsed so that we can make
sense of various products of fields, such as the condensimginations = 1. For a mo-
mentum space cutoff, assume that it is much larger thapp. Correspondingly, for a lattice
cutoff imagine that the lattice spacing is much smaller thafigcp. In this section we ignore
any lattice artifacts that should vanish in the continuumitli We will return to such issues later
when we discuss lattice fermions.

7.1 Effective potentials

We begin with an elementary review of the concept of effegbtentials in quantum field theory.
In generic continuum field theory language, consider thia paegral for a scalar field

Z = / dge5(®), (161)
After adding in some external sources
Z(J) = / dpe=SOHI9, (162)

general correlation functions can be found by differeitgivith respect taJ. Here we use
a shorthand notation that suppresses the space dependencéy = [ dzJ(z)é(z) in the
continuum, otJ¢ = 3. J;¢; on the lattice.

One can think of/ as an external force pulling on the field. Such a force wilbtémdrive

the the field to have an expectation value
OF
(0) =57 (163)

where the free energy in the presence of the source is definB@/a = — log(Z(.J)).
Now imagine inverting Eq[{163) to determine what value @ffibrceJ would be needed to
give some desired expectation valigi.e. we want solve

O(J) = (D) s(@) = —g—§

for J(®). In terms of this formal solution, construct the “Legendsnsform”
V(®) = F(J(D)) + 2J(D) (165)

(164)
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and look at
oV oJ oJ
%_—¢%+J+<I>%_J. (166)

If we now turn off the sources, this derivative vanishes. §the expectation value of the field
in the absence of sources occurs at an extremul(@f). This quantityl” is referred to as the
“effective potential.”

An interesting formal property of this construction follsfvom looking at the second deriva-
tive of V

o2V aJ
Actually, it is easier to look at the inverse
0P 0*F
97 9 (6%) = ()% = (¢ — (9))*) > 0. (168)

Thus this second derivative is never negative! This firstlateows we are actually looking for a
minimum and not a maximum &f, but it also implies that’(®) can only have ONE minimum!

This convexity property is usually ignored in conventiodeicussions, where phase transi-
tions are signaled by jumps between distinct minima of themqtal.. So what is going on? Are
phase transitions impossible? Physically, the more yolgouthe field, the larger the expecta-
tion of ® will become. It won't go back. The proper interpretationhatwe must do Maxwell’s
construction. If we force the expectationgto lie between two distinct stable phases, the sys-
tem will phase separate into a heterogeneous mixture. $nrégion the effective potential is
flat. Note that there is no large volume limit required in tihewe discussion. However other
definitions ofl/ can allow a small barrier at finite volume due to surface mmsifects. A mixed
phase must contain interfaces, and their energy represamsill barrier.

7.2 Goldstone Bosons

Now we turn to a brief discussion on some formal aspects ofi§ohe Bosons. Suppose we
have a field theory containing a conserved current

By =0 (169)
so the corresponding char@e= [ d*zj(z) is a constant

aQ B
— = —i[H,Q] = 0. (170)

Here H is the Hamiltonian for the system under consideration. $apphowever, that for some
reason the vacuum is not a singlet under this charge

Ql0) #0 (171)

Then there must exist a massless particle in the theory.i@Gentbe state

exp(i6 / d3zjo (x)e_”2)|0> (172)
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wheree is a convenient cutoff and some parameter. As epsilon goes to zero this state by
assumption is not the vacuum, but since the Hamiltonian coraswith @, the expectation
value of the Hamiltonian goes to zero (normalize so the giaiate energy is zero). We can
thus find a state that is not the vacuum but with arbitrarilakenergy. The theory has no mass
gap. This situation of having a symmetry under which the uatis not invariant is referred to
as “spontaneous symmetry breaking.” The low energy stefm®sent massless particles called
Goldstone bosons [59].

Free massless field theory is a marvelous example wheretbirergan be worked out. The
massless equation of motion

0,0, =0 (173)
can be written in the form

O =0 (174)
where

Ju = Oud. (175)

The broken symmetry is the invariance of the Lagrandian [ d*z(9,¢)?/2 under constant
shifts of the field

b= b+c (176)

Note thatj, = dy¢ =  is the conjugate variable to. Since it is a free theory, one could work
out explicitly

(0] exp(i0 / P ajo(w)e=/2)|0). (177)

We can, however, save ourselves the work using dimensiordysis. The field) has dimen-
sions of inverse length, whilg, goes as inverse length squared. Tiusbove has units of
inverse length. These are the same dimensions.dsow for a free theory, by Wick’s theorem,
the answer must be Gaussiarfine conclude that the above overlap must go as

exp(—CH?/eh) (178)

whereC' is some non-vanishing dimensionless number. This exmresapidly goes to zero as
epsilon becomes small, showing that the vacuum is indeedhwatiant under the symmetry.
In the limit of € going to zero, we obtain a new vacuum that is not even in thesdditibert
space. The overlap of this new state with any local polynbafifields on the original vacuum
vanishes.

7.3 Pions and spontaneous symmetry breaking

We now extend the effective potential to a function of seiezlevant meson fields in QCD.
Intuitively, V represents the energy of the lowest state for a given fieldatafion, as discussed
more formally earlier via a Legendre transformation. Heeewill ignore the result that effec-
tive potentials must be convex functions of their argumewts discussed, this issue is easily
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V(o)

o

Fig. 5. Spontaneous chiral symmetry breaking is repredelmyea double well effective potential with
the vacuum settling into one of two possible minima. In thigimum chiral symmetry is broken by the
selection of a specific value for the quark condensate.

understood in terms of a Maxwell construction involving fifease separation that will occur if
one asks for a field expectation in what would otherwise beng&ee region. Thus we will use
the traditional language of spontaneous symmetry brealanmgsponding to having an effective
potential with more than one minimum. When the underlyirgptly possesses some symmetry
but the individual minima do not, spontaneous breaking coatmut when the vacuum selects
one of the minima arbitrarily. The discussion here closeliofvs that in Ref.[[6D)].

We work here with the composite scalar and pseudoscalas field

o~ Yy
To ~ 1PAY5Y (179)
n o~ ihyst)

Here the), are the structure constants for the flavor gréaiip(/N¢). They are generalizations
of the usual Gell-Mann matrices fro$U (3); however, now we are concerned with the flavor
group, not the internal symmetry group related to confindm&sa mentioned earlier, we must
assume that some sort of regulator, perhaps a lattice, lade po define these products of fields
at the same point. Indeed, most of the quantities mentionthds section are formally divergent,
although we will concentrate on those aspects that surkizedntinuum limit.

To simplify the discussion, consider degenerate quarks avgmall common mass. Later
we will work out in some detail the two flavor case for non-degrate quarks. It is also conve-
nient to initially restrictV; to be even, saving for later some interesting subtletiesrayiwith
an odd number of flavors. And we assufiie is small enough to maintain asymptotic freedom
as well as avoiding any possible conformal phases.

The conventional picture of spontaneous chiral symmeteaking in the limit of massless
guarks assumes that the vacuum acquires a quark conderitbate w

() = (o) =v #0. (180)

In terms of the effective potential{ (o) should acquire a double well structure, as sketched in
Fig.[3. The symmetry under «+ —o is associated with the invariance of the action under a
flavored chiral rotation. For example, with two flavors thabe of variables

b — €T 2 = imyyse)

= Peinnl2 = iy (181)
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Fig. 6. The flavor non-singlet pseudoscalar mesons are @®oleldosons corresponding to flat directions
in the effective potential.

leaves the massless action invariant but takésits negative. Heres is the conventional Pauli
matrix corresponding to the third component of isospin.

Extending the effective potential to a function of the namgfet pseudoscalar fields gives
the standard picture of Goldstone bosons. These are masgen the quark mass vanishes,
corresponding td\ff — 1 “flat” directions for the potential. One such direction isetthed
schematically in Fid.]6. For the two flavor case, these raatrepresent a symmetry mixing the
sigma field with the pions

o — ocos(¢) + 7 sin(e)

7 — —osin(¢) + 7 cos(d). (182)

In some sense the pions are waves propagating through theamishing sigma condensate. The
oscillations of these waves occur in a direction “transe’éts the sigma expectation. They are
massless because there is no restoring force in that directi

If we now introduce a small mass for the quarks, this will efifeely tilt the potential/(c) —
V(o) —mo. This selects one minimum as the true vacuum. The tiltingefiotential breaks the
global symmetry and gives the Goldstone bosons a small mepspional to the square root of
the quark mass, as sketched in Eig. 7. The standard chirehdhggan approach is a simultaneous
expansion in the masses and momenta of these light particles

As discussed earlier, Goldstone bosons are associateadaviferved currents with charges
that do not leave the vacuum invariant. In the present casetare the axial currents formally
given by the quark bilinears

A = Ay, 5. (183)
Combined with the vector fields
Vit = O, (184)

these give rise to the famous algebra of currents. Indeedast this algebra that motivated
Bjorken to propose the idea of scaling in deep inelastiolegtattering [6/1, 62].
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Fig. 7. A small quark mass term tilts the effective potengalecting one direction for the true vacuum and
giving the Goldstone bosons a mass proportional to the sqoat of the quark mass.

8 The chiral anomaly

This picture is, of course, completely standard. It is almmmon lore that the anomaly prevents
the ' from being a Goldstone boson and leaves it with a mass of axderp, even in the
massless quark limit. The issue is that the effective p@kEWtmust not be symmetric under an
anomalous rotation betweehando

o — ocos(¢)+n sin(¢)
17 — —osin(¢p) + 7' cos(9).

In the next subsection we discuss how this symmetry disapea its connection to the zero
modes of the Dirac operator.

If we consider the effective potential as a function of thédfier and’, it should have a
minimum ato ~ v andr’ ~ 0. Expanding about that point we expect a qualitative form

(185)

V(o,n') ~m2(o —v)? +m2y* + O((o —v)*, 7). (186)

We expect bothn, andm,, to remain of ordeA ¢ p, evenin the chiral limit. And, at least with
an even number of flavors as we are currently consideringe tsteould be a second minimum
with o ~ —u.

At this point one can ask whether we know anything else atbauéffective potential in the
(o,1") plane. We will shortly see that indeed we do, and the potdmisa total ofV, equivalent
minima in the chiral limit. But first we review how the aboverima arise in quark language.

8.1 What broke the symmetry?

The classical QCD Lagrangian has a symmetry under a rotafitire underlying quark fields

b — eidw.s/?w

U — Peitrs/2 (187)
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This corresponds directly to the transformation of the cosite fields given in E4_185. This
symmetry is “anomalous” in that any regulator must breakithva remnant surviving in the
continuum limit [63-65].

The specifics of how the anomaly works depend on the detailseeafegulator. Here we will
follow Fujikawa [66] and consider the fermionic measurehe path integral. If we make the
above rotation on the field, the measure changes by the determinant of the rotatiofxmatr

dp — e /2|dyp = e~ 1T/ 2y, (188)

Here is where the subtlety of the regulator comes in. Naiyelg a simple four by four traceless
matrix. If it is indeed traceless, then the measure wouldhisariant. However, in the regulated
theory this is not the case. This is intimately tied with theeéx theorem for the Dirac operator
in topologically non-trivial gauge fields.

A typical Dirac action takes the formy(D + m)i with the kinetic termD a function of
the gauge fields. In the naive continuum theddyis anti-Hermitian,D' = —D, and anti-
commutes withys, i.e. [D,v5]+ = 0. What complicates the issue with fermions is the index
theorem discussed earlier and reviewed in Refl. [67]. If &gamuind gauge field has winding
then there must be at leastexact zero eigenvalues @&. Furthermore, on the space spanned
by the corresponding eigenvectorsg, can be simultaneously diagonalized with The net
winding number equals the number of positive eigenvalueg afiinus the number of negative
eigenvalues. In this subspace the tracesofloes not vanish, but equails

What about the higher eigenvaluesiof? We discussed these earlier when we formulated
the index theorem. Becau$P,vs]+ = 0, non-vanishing eigenvalues appear in opposite sign
pairs; i.e. if D|¢)) = A|¢) thenD~s ) = —Avys|¢). For an anti-Hermitea®, these modes are
orthogonal with(y)|y5]|¢) = 0. As a consequence; is traceless on the subspace spanned by
each pair of eigenvectors.

So what happened to the opposite chirality states to thermedes? In a regulated theory
they are in some sense “above the cutoff.” In a simple contimdiscussion they have been
“lost at infinity.” With a lattice regulator there is no “infily”; so, something more subtle must
happen. With the overlap [68,69] or Wilsdn [10] fermionssalissed in more detail later, one
gives up the anti-Hermitean character Bf Most eigenvalues still occur in conjugate pairs
and do not contribute to the trace ¢f. However, in addition to the small real eigenvalues
representing the zero modes, there are additional moderevihe eigenvalues are also real
but large. With Wilson fermions these appear as massiveldostates. With the overlap, the
eigenvalues are constrained to lie on a circle. In this clasegvery exact zero mode there is
another mode with the opposite chirality lying on the opposide of the circle. These modes
are effectively massive and break chiral symmetry. The seoy involvement of both small and
large eigenvalues warns of the implicit danger in attemptseiparate infrared from ultraviolet
effects. When the anomaly is concerned, going to shortmis&is not sufficient for ignoring
non-perturbative effects related to topology.

So with the regulator in place, the traceygfdoes not vanish on gauge configurations of non-
trivial topology. The change of variables indicated in E§8Introduces into the path integral a
modification of the weighting by a factor

e~ 0Trys _ —idNpv (189)



Confinement, chiral symmetry, and the lattice 49

=% N

Fig. 8. We have two minima in the, n” plane located at = +v andn’ = 0. The circles represent that the
fields will fluctuate in a small region about these minima. @a&nfind any other minima?

Here we have applied the rotation to all flavors equally, ttesfactor of N in the exponent.
The conclusion is that gauge configurations that have rigialttopology receive a complex
weight after the anomalous rotation. Although not the tagficliscussion here, note that this
factor introduces a sign problem if one wishes to study thissgcs via Monte Carlo simulations.
Here we treat allV; flavors equivalently; this corresponds to dividing the camtionally defined
CP violation angle, to be discussed later, equally amon§dhers, i.e. effectivelyp = ©/Ny.

8.2 Adiscrete chiral symmetry

We now return to the effective Lagrangian language of befdfer the massless theory, the
symmetry undes < —o indicates that we expect at least two minima for the effegbiotential
considered in ther, ' plane. These are located as sketched in[Big. 8. Do we knovhiagyt
about the potential elsewhere in this plane? The answersisigdeed there are actually,
equivalent minima.

It is convenient to separate the left- and right-hand pdrtiseofermion field

VLR = l(1 +75)9

2
— —1
Y= ¢§(1 F75)- (190)
The mass term is thus
myyp = m(ELZZJR + ER"/)L) (191)

and mixes the left and right components.
Using this notation, due to the anomaly the singlet rotation

Y1, — €Yy (192)
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D,

Fig. 9. For four massless flavors we have four equivalentmmarin theo, " plane. This generalizes ¥
minima with N flavors.

is not a valid symmetry of the theory for generic values of éimgley. On the other hand,
flavored chiral symmetries should survive, and in particula

WL = grpp = ety (193)

is expected to be a valid symmetry for any set of anglesThe point of this subsection is that,
for special special discrete values of the angles, theiootain Eq[I9P and Ef. IP3 can coincide.
At such values the singlet rotation becomes a valid symmetnyarticular, note that

g=e*"MNs e Zy, C SU(Ny). (194)
Thus a valid discrete symmetry involving ondyandr’ is

o — ocos(2n/Ny) +n'sin(2n/Ny)

n' — —osin(2r/Ny) + ' cos(2m/Ny). (195)

The potentiall’ (o, 7') has aZy, symmetry manifested iV, equivalent minima in théo, ')
plane. For four flavors this structure is sketched in Eig. 9.

This discrete flavor singlet symmetry arises from the ttifdat that”y is a subgroup of both
SU(N)andU (1). At the quark level the symmetry is easily understood siheequark measure
receives an additional phase proportional to the windinglmer from every flavor. WithVg
flavors, these multiply together making

v, — 2Ny (196)

a valid symmetry even though rotations by smaller anglesate

The role of theZ y center ofSU (V) is illustrated graphically in Fig. 10, taken from Réf.[25].
Here we plot the real and the imaginary parts of the trace0ddQD SU(3) matrices drawn
randomly with the invariant group measure. The region ofpsuponly touches th& (1) circle
at the elements of the center. All elements lie on or withan¢brve mapped out by elements of
form exp(i¢Ag). Fig.[11 is a similar plot for the groufU (4).
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ImTrg

Re Trg

Fig. 10. The real and imaginary parts for the traces of 10f@@8@8omly choseyU (3) matrices. All points
lie within the boundary representing matrices of the fesmp(i¢As). The tips of the three points represent
the center of the group. The outer curve represents the laoyitiolat would be found if the group was the
full U(1). Taken from Ref[[25].

ImTrg

Fig. 11. The generalization of Fig. 110 80/ (4). The real and imaginary parts for the traces of 10,000
randomly chosewU (4) matrices. Taken from Ref. [25].
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8.3 The 't Hooft vertex

The consequences of non-trivial gauge topology and theemioms to the anomaly are often
described in terms of an effective multi fermion interantreferred to as the “ 't Hooft vertex.”

To understand the 't Hooft interaction in path integral laage, we begin with a reminder of
the underlying strategy of lattice simulations. Consider generic path integral, or “partition
function,” for quarks and gluons

/ (dA)(dip ) exp (—Sy(A) — TD(A)) . (197)

Here A denotes the gauge fields amdy the quark fields. The pure gauge part of the action is
S,(A) and the matrix describing the fermion part of the actio®is4). Since direct numeri-
cal evaluation of the fermionic integrals appears to be anfical, the Grassmann integrals are
conventionally evaluated analytically, reducing the ipiart function to

Z - / (dA) =S54 |D(4)|. (198)

Here|D(A)| denotes the determinant of the Dirac matrix evaluated igiden gauge field. Thus
motivated, the basic lattice approach is to generate a sehdbm gauge configurations weighted
by exp(—S4(A)) | D(A)|. Given an ensemble of such configurations, one then essmhiesical
observables by averages over this ensemble.

This procedure seems innocent enough, but it can run intdkeonvhen one has massless
fermions and corresponding zero modes associated witHagpoTo see the issue, write the
determinant as a product of the eigenvalueof the matrixD. In generalD may not be a
normal matrix; so, one should pick either left or right eigectors at one’s discretion. This is a
technical detail that will not play any further role here.drder to control infrared issues with
massless quarks, introduce a small explicit masand reduce the path integral to

Z = / (dA) e 5o TN +m). (199)

Now suppose we have a configuration where one of the eigegwaliD(A) vanishesj.e.
assume that somg; = 0. This, of course, is what happens with non-trivial topolgggsent.
As we take the mass to zero, any configurations involving suckeigenvalue will drop out
of the ensemble. At first one might suspect this would be a seteasure zero in the space
of all possible gauge fields. However, as discussed abogenttex theorem ties gauge field
topology to such zero modes. In general these modes aret tatlesr small deformations of the
fields. Under the traditional lattice strategy the corresiog configurations would then have
zero weight in the massless limit. The naive conclusionas skich configurations are irrelevant
to physics in the chiral limit.

It was this reasoning that 't Hooft showed to be incorrectleled, he demonstrated that it
is natural for some observables to haven factors when zero modes are present. These can
cancel the terms linear im from the determinant, leaving a finite contribution.

As a simple example, consider the quark condensate in ore fRRD

— 1

@) =y (@) e (D] T (200
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HereV represents the system volume, inserted to give an integsigatity. Expressing the
fermionic factors in terms of the eigenvalues/ofeduces this to

@) =y [ e [Jovem) Y50 (201)

Now if there is a mode with; = 0, the factor ofm is canceled by &/m piece in the trace of
D~1. Configurations containing a zero mode give a constant ibuion to the condensate and
this contribution survives in the massless limit. Note tié effect is unrelated to spontaneous
breaking of chiral symmetry and appears even with finite nau

This contribution to the condensate is special to the onefthieory. Because of the anomaly,
this quark condensate is not an order parameter for any symynwith more fermion species
there will be additional factors of: from the determinant. Then the effect of the 't Hooft vertex
is of higher order in the fermion fields and does not appeactlir in the condensate. For two
or more flavors the standard Banks-Casher piciure [70] ofgenealue accumulation leading to
the spontaneous breaking of chiral symmetry should apply.

The conventional discussion of the 't Hooft vertex startgrserting fermionic sources into
the path integral

Z(n,7) = / (dA) (dep) (dp) e~ Sa=PDHmV+n 1) (202)

Differentiation, in the Grasmannian sense, with respetti¢se sources will generate the expec-
tation for an arbitrary product of fermionic operators.elgtating out the fermions reduces this
to

Z = / (dA) e=Setn(D+m) "0 [T +m). (203)

Consider a zero modg, satisfyingDvy = 0. In general there is also a left zero mode satisfying
oD = 0. If the sources have an overlap with the mode, thd#ig,) # 0, then a factor of
1/m in the source term can cancel thefrom the determinant. Although non-trivial topological
configurations do not contribute t6, their effects can survive in correlation functions. Fa th
one-flavor theory the effective interaction is bilinear lire fermion sources and is proportional
to

(Tt0) (P n)- (204)

As discussed earlier, the index theorem tells us that inrgéttee zero mode is chiral; it appears
in eithern; nr or 7znL, depending on the sign of the gauge field winding.

With Ny > 2 flavors, the cancellation of the mass factors in the deteantirequires source
factors from each flavor. This combination is the 't Hoofttesr It is an effective N, fermion
operator. In the process, every flavor flips its spin, as sleetén Fig[IR. Indeed, this is the
chiral anomaly; left and right helicities are not sepasateinserved.

Because of Pauli statistics, the multi-flavor vertex can bittewm in the form of a determinant.
This clarifies how the vertex preserves flavored chiral sytnege With two flavors, call their
sources: andd, Eq.[204 generalizes to

(@) olw) (i) Bold)
@) (Gol) (@) (Bold) | (205)
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Fig. 12. The 't Hooft vertex fotV, flavors is a2 Ny effective fermion operator that flips the spin of every
flavor.

Note that the effect of the vertex is non-local. In general fero mode) is spread out
over the finite region of the “instanton’e. the size parameterfrom the explicit solution given
earlier. This means there is an inherent position spacertamtty on where the fermions are
interacting. A particular consequence is that fermion eovetion is only a global symmetry. In
Minkowski space language, this non-locality can be thowdlim terms of states sliding in and
out of the Dirac sea at different locations.

8.4 Fermions in higher representations

When the quarks are massless, the classical field theorgspmnding to the strong interactions
has al/ (1) axial symmetry under the transformation

b= ey P — e, (206)

It is the 't Hooft vertex that explains how this symmetry does survive quantization. In this
subsection we discuss how when the quarks are in non-funtahnepresentations of the gauge
group, discrete subgroups of this symmetry can remain Isecailadditional zeros in the Dirac
operator.

While these considerations do not apply to the usual thebtlyeostrong interactions where
the quarks are in the fundamental representation, thersexeral reasons to study them any-
way. At higher energies, perhaps as being probed at the Itaigeon Collider, one might well
discover new strong interactions that play a substantlelirothe spontaneous breaking of the
electroweak theory. Also, many grand unified theories medermions in non-fundamental
representations. As one example, we will see that massessdns in the 10 representation
of SU(5) possess &5 discrete chiral symmetry. Similarly the left handed 16 econgrepre-
sentation ofSO(10) gives a chiral gauge theory with a surviving discr&techiral symmetry.
Understanding these symmetries may eventually play am@a eventual discretization of chiral
gauge theories on the lattice.
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Here we are generalizing the index theorem relating gaudg tfipology to zero modes
of the Dirac operator. In particular, fermions in highernegentations can involve in multiple
zero modes for a given winding. Being generic, consideraggmtationX of a gauge groug:.
Denote byNx the number of zero modes that are required per unit of windingber in the
gauge fields. That is, suppose the index theorem gener#dizes

n,. —n; = Nxv (207)

wheren,. andn; are the number of right and left handed zero modes, respégtandv is the
winding number of the associated gauge field. The basic 'tfHamstex receives contributions
from each zero mode, resulting in an effective operator wli@ product o2 Nx fermion fields.
Schematically, the vertex is modified along the lingsyr — (¥ 1r)N*. While this form
still breaks thel/ (1) axial symmetry, it is invariant undefr — €>"*/Nx¢p. In other words,
there is aZy, discrete axial symmetry.

There are a variety of convenient tools for determini¥ig. Consider building up repre-
sentations from lower ones. Take two representationgnd X, and form the direct product
representatior; ® Xs. Let the matrix dimensions fak; andX» be D; and D, respectively.
Then for the product representation we have

Nx,ex, = Nx,Dx, + Nx,Dx,. (208)

To see this, start withX; and X, representing two independent grougs andGs. With G,
having winding, there will be a zero mode for each of the disiems of the matrix index associ-
ated withX,. Similarly there will be multiple modes for winding iffs. These modes are robust
and all should remain if we now constrain the groups to be dinees

As a first example, denote the fundamental representaticitgfV) as F' and the adjoint
representation ad. Then usingF’ ® F = A @ 1 in the above give&V4, = 2Ny, as noted some
time ago[71]. WithSU (3), fermions in the adjoint representation will have six-fdiegenerate
zero modes.

For another example, consid&t’ (2) and build up towards arbitrary spine {0, 3,1,3,...}.
Recursing the above relation gives the result for arbitspig

Ny =5(25s+1)(2s+2)/3. (209)

Another technique for findingvx in more complicated groups begins by rotating all topo-
logical structure into aiwU (2) subgroup and then counting the correspondibi2) represen-
tations making up the larger representation of the wholeigroAn example to illustrate this
procedure is the antisymmetric two indexed representac#U/ (V). This representation has
been extensively used in [[12-75] for an alternative apgréacthe large gauge group limit. The
basicN (N — 1)/2 fermion fields take the form

Yab = —Wha, a,be1,2,...N. (210)

Consider rotating all topology into th&l/ (2) subgroup involving the first two indices, i.e. 1 and
2. Because of the anti-symmetrization, the figld is a singlet in this subgroup. The field pairs
(11,5, 12,5) form a doublet for eacli > 3. Finally, the(N — 2)(IN — 3)/2 remaining fields
do not transform under this subgroup and are singlets. OQweeshave N — 2 doublets under
the SU(2) subgroup, each of which gives one zero mode per winding numfe conclude
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that the 't Hooft vertex leaves behindzy_» discrete chiral symmetry. Specializing to the 10
representation a§U (5), this is theZ; mentioned earlier.

Another example is the groupO(10) with fermions in the 16 dimensional covering group.
This forms the basis of a rather interesting grand unifiedrthevhere one generation of fermions
is placed into a single left handed 16 multipleti[76]. Thipnesentation includes two quark
species interacting with th8U (3) subgroup of the strong interactions, Rotating a topoldgica
excitation into this subgroup, we see that the effectivéexewill be a four fermion operator and
preserve & discrete chiral symmetry.

It is unclear whether these discrete symmetries are exphéotbe spontaneously broken.
Since they are discrete, such breaking is not associatédGatdstone bosons. But the quark
condensate does provide an order parameter; so, When> 1, any such breaking would be
conceptually meaningful. This could be checked in numésicaulations.

9 Massive quarks and the Theta parameter

As discussed earlier and illustrated in FFih. 9, a quark nexsstmyn) ~ —mo is represented by
a “tilting” of the effective potential. This selects one bktmultiple minima in ther, ’ plane as
the true vacuum. For masses small compared to the scale of RE€Bther minima will persist as
extrema, although due to the flat flavor non-singlet dirextjeome of them will become unstable
under small fluctuations. Counting the minima sequentiaith the true vacuum having = 0,
each is associated with small excitations in the pseudalstahe directions having an effective
mass ofm2 ~ mcos(2mn/Ny). Note that whenV; exceeds four, there will be more than one
meta-stable state. However, in the usual case of consglexio or three quarks as light, only
one minimum remains locally stable.

9.1 Twisted tilting

Conventionally the mass tilts the potential downward infbsitives direction. However, it is
an interesting exercise to consider tilts in other direwim thes, ;' plane. This is accomplished
with an anomalous rotation on the mass term

—myp —  —mcos(¢)y) — imsin(d)yse
~  —mecos(¢)o + msin(p)n’. (211)

Were it not for the anomaly, this would just be a redefinitidfields. However the same effect
that gives they its mass indicates that this new form for the mass term gimesequivalent
theory. Asivys1 is odd under CP, this theory is explicitly CP violating.

The conventional notation for this effect involves the &®@l= N;¢. Then theZy, sym-
metry amounts to &r periodicity in ©. As Fig.[I3 indicates, at special values of the twisting
angle¢, there will exist two degenerate minima. This occurs, foaragle, atp = =/N; or
© = 7. As the twisting increases through this point, there willabfirst order transition as the
true vacuum jumps from the vicinity of one minimum to the next

Because of theZy, symmetry of the massless theory, all tNe separate minima are phys-
ically equivalent. This means that if we apply our mass temrthe direction of any of them,
we obtain the same theory. In particular, for four flavorsubeal mass terma)y is equivalent
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D,

Fig. 13. With massive quarks and a twisting angle)of= 7 /N, two of the minima in ther, " plane
become degenerate. This corresponds to a first order toamatio = .

to using the alternative mass teims)ys1). This result, however, is true if and only ¥ is a
multiple of four.

9.2 OddN;

One interesting consequence of this picture concerns Q@Dami odd number of flavors. The
groupSU (Ny) with odd Ny does not include the elementl. In particular, theZy, structure is
not symmetric under reflections about tfieaxis. Fig[1# sketches the situation i/ (3). One
immediate conclusion is that positive and negative masseatrequivalent. Indeed, a negative
mass with three degenerate flavors corresponds t®ther case and a spontaneous breaking
of CP is expected. In this case there is no symmetry undandaki~ 7/ to its negative. The
simple picture sketched in Figl 5 no longer applies.

At © = 7 the theory lies on top of a first order phase transition linsirAple order parameter
for this transition is the expectation value for thidield. As this field is odd under CP symmetry,
this shows that negative mass QCD with an odd number of flapanstaneously breaks @mhis
does not contradict the Vafa-Witten theorémi[77] becausigigregime the fermion determinant
is not positive definite.

Note that the asymmetry in the sign of the quark mass is nalyeseen in perturbation
theory. Any quark loop in a perturbative diagram can havestga of the quark mass flipped
by a5 transformation. It is only through the subtleties of reginig the divergent triangle
diagram[[63=65] that the sign of the mass enters.

A remarkable conclusion of these observations is that twsighlly distinct theories can
have identical perturbative expansions. For example, flatlor SU (3) the negative mass theory
has spontaneous P violation, while the positive mass theory does not. Yet badkes have

8Dashen’s original paper [18] speculates that this mighetsted to the parity breaking seen in nature. This presum-
ably requires a new “beyond the standard model” interagtdiner than QCD.
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Fig. 14. For oddVy, such as the three flavor case sketched here, QCD is not syimmader changing the
sign of the quark mass. Negative mass corresponds to tékiagr.

exactly the same perturbation theory. This dramaticalipalestrates what we already knew:
non-perturbative effects are essential to understand®g.Q

A special case of an odd number of flavors is one-flavor QGCD. [If8fhis case the anomaly
removes all chiral symmetry and there is a unique minimunhewt n’ plane, as sketched in
Fig.[I8. This minimum does not occur at the origin, beingtshito (1)¢)) > 0 by the 't Hooft
vertex, which for one flavor is just an additive mass shiff] [T®nlike the case with more flavors,
the resulting expectation value feris not from a spontaneous symmetry breaking; indeed, there
is no chiral symmetry to break in one flavor QCD. Any reguldtat preserves a remnant of
chiral symmetry must inevitably fail [27]. Note also that fine-flavor QCD there is no longer
the necessity of a first order phase transitio®at= 7. It has been argued [78] that for finite
qguark mass such a transition should still occur if the masafficiently negative, but the region
around vanishing mass is not expected to show any singularit

An unusual feature of one-flavor QCD is that the renormatimadf the quark mass is not
multiplicative when non-perturbative effects are taketo imccount. The additive mass shift is
generally scheme dependent since the details of the iostaffects depend on scale. This is
the basic reason that a massless up quark is not a possibtesdb the strong CP problem
[26]. Later we will discuss this in more detail in the contekthe two flavor theory with non-
degenerate masses.

Because of this shift in the mass, the conventional parasé@endm are singular coor-
dinates for the one-flavor theory. A cleaner set of variallesld be the coefficients of the
two possible mass termgy andiiys1¢» appearing in the Lagrangian. The ambiguity in the
quark mass is tied to rough gauge configurations with amhiguonding number. This applies
even to the formally elegant overlap operator that we wétdss later; when rough gauge fields
are present, the existence of a zero mode can depend on Hileddétrmion operator in use.
Smoothness conditions imposed on the gauge fields to rerhizvarhbiguity appear to conflict
with fundamental principles, such as reflection positiy&g].
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Fig. 15. The effective potential for one-flavor QCD with shwalark mass has a unique minimum in the
o,n’ plane. The minimum is shifted from zero due to the effect ef'tHooft vertex.

The Zy, symmetry discussed here is a property of the fermion detemtiand is indepen-
dent of the gauge field dynamics. In Monte Carlo simulatiorglaage, this symmetry appears
configuration by configuration. WitV flavors, we always haveD| = |e2™/Ns D| for any
gauge field. This discrete chiral symmetry is inherentlgdiginuousinV¢. This non-continuity
lies at the heart of the issues with the rooted staggereka@ymoroximation. We will return to
this topic in a later section.

9.3 Quark scattering and mass mixing

So far we have worked with degenerate quarks. In generalsgmeies introduces another com-
plex mass parameter. Using flavored chiral rotations we cawenthe phases of the masses
around arbitrarily, leaving only one overall phase, thet&lgarameter. Thus once the overall
scale has been set, QCD depends\g+- 1 parameters.

Here we explore the rich phase diagram of two flavor QCD as etiiomof the most general
guark masses, including tleparameter. This section closely follows the discussiongh [81].
This theory involves three independent parameters. One igi@ating; its strong experimental
limit is the strong CP problem. Here we will characterize plagameters by distinguishing their
transformations under various symmetries. As we define thieenresulting variables are each
multiplicatively renormalized. However non-perturbatiffects are not universal, leaving indi-
vidual quark mass ratios with a renormalization scheme nidgrece. This exposes ambiguities
in matching lattice results with perturbative schemes &edtautology involved in approaches
that attack the strong CP problem via a vanishing mass fdightest quark.

Before turning on the masses, we reemphasize the quadifaibperties expected in massless
two-flavor QCD. Of course, being an interacting quantum fiekbry, nothing has been proven
rigorously. While the classical theory is conformally inigat, as discussed earlier, confinement
and dimensional transmutation generate a non-trivial meake. The theory should, of course,
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Fig. 16. Both pion and eta-prime exchange contribute to #igirscattering between up and down quarks.
Figure from Ref.[[81].

contain massive stable nucleons. On the other hand, spanarchiral symmetry breaking
should give rise to three massless pions as Goldstone hoBausd states of glue in general
will acquire a width due to decays into pions. In additiore thvo flavor analog of the eta-prime
meson should acquire its mass from the anomaly.

In this standard picture, the eta-prime and neutral piomlires distinct combinations of
quark-antiquark bound states. In the simple quark modehéwtral pseudoscalars involve the
combinations

T ~ WYsU —_37561
n' ~ Uysu + dysd + glue (212)

Here we include a gluonic contribution from mixing betweba4’ and glueball states. When
the quarks are degenerate, isospin forbids such mixindnéopton.

Projecting out helicity states for the quatksr = (1 & 75)q/2, the pseudoscalars are com-
binations of left with right handed fermionse. G; gr — Grqr. Thus, as shown schematically in
Fig.[18, meson exchange will contribute to a a spin flip predes hypothetical quark scatter-
ing experiment. More precisely, the four point functi@gfzu;drdy) is not expected to vanish.
Scalar meson exchange will also contribute to this prodegghis is not important for the qual-
itative argument below. Of course we must assume that sorhefspauge fixing has been done
to eliminate a trivial vanishing of this function from an égfral over gauges. We also consider
this four point function at a scale before confinement sets in

It is important that thery andr’ are not degenerate. This is due to the anomaly and the fact
that ther/ is not a Goldstone boson. As we discussed earlierrghg’ mass difference can be
ascribed to topological structures in the gauge field. Bee#lue mesons are not degenerate, their
contributions to the above diagram cannot cancel. The osiui of this simple argument is that
helicity-flip quark-quark scattering is not suppressedmchiral limit.

Now consider turning on a small down quark mass while leatirgup quark massless.
Formally such a mass allows one to connect the ingoing argbig down quark lines in Fi§. 16
and thereby induce a mixing between the left and right hangeduark. Such a process is
sketched in Fid.17. Here we allow for additional gluon exudes to compensate for turning the
pseudoscalar field into a traditional mass term.

So the presence of a non-zetauark mass will induce an effective mass for thguark,
even if the latter initially vanishes. As a consequence,-perurbative effects renormalize
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Fig. 17. Through physical meson exchange, a down quark naassduce an effective mass for the up
quark. The gluon exchanges can compensate for the pselatosature of the meson fields. Figure from
Ref. [81].

m,/mg. If this ratio is zero at some scale, it cannot remain so fsalles. Only in the isospin

limit are quark mass ratios renormalization group invatriaks lattice simulations include all

perturbative and non-perturbative effects, this phenamémnautomatically included in such an
approach.

This cross talk between the masses of different quark spécie relatively straightforward
consequence of the chiral anomaly and has been discussedigéwes in the past, usually in
the context of gauge field topology and the index theolerrid2684]. This result is, however,
frequently met with consternation from the community wedlsed in perturbation theory. In-
deed, Feynman diagrams tend to suppress spin-flip procassbe quark masses go to zero.
The above argument shows that this lore need not apply whemaous processes come into
play. In particular, mass renormalization is not flavor 8land the concept of mass independent
regularization is problematic. Since the quark massesentla each other, there are inherent
ambiguities definingn,, = 0. This has consequences for the strong CP problem, discussed
further below. Furthermore, a traditional perturbativguiator such as\/S is not complete
whenm,, # mg4. Because of this, the practice of matching lattice calatatto M/S is also
problematic.

Given the simplicity of the above argument, it is perhapsewhat surprising that it contin-
ues to receive criticism. The first complaint sometimes niadkat one should work directly
with bare quark masses. This ignores the fact that the baseanall vanish under renormaliza-
tion. We discussed earlier the renormalization group egudor a quark mass

dmi
a
da
As asymptotic freedom drives the bare coupling to zero, tre nasses behave as

=v(g9)m; = v09” + O(g"). (213)

m ~ g’Yo/Bo(l + 0(92)) -0 (214)

whereg is the first term in the beta function controlling the vanighof the bare coupling in the
continuum limit. Since all bare quark masses are formaltg zene must address these questions
in terms of a renormalization scheme at a finite cutoff.

A second frequent objection is that in a mass independeulaggation scheme, mass ratios
are automatically constant. Such an approach asks thagioemalization group function(g)
in Eg. [2I3) be chosen to be independent of the quark spesiksnass. This immediately
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implies the constancy of all quark mass ratios. As only tist farm in the perturbative expansion
of v(g) is universal, a mass independent scheme is indeed an alfmweedure. However, such
a scheme obscures the off-diagona] effect onm,, discussed above. In particular, by forcing
constancy of bare mass ratios, the ratios of physical pam@sses must vary as a function of
cutoff. This will be in a manner that cancels the flow from theqess discussed above. The fact
that physical particle mass ratios are not just a functioguairk mass ratios is shown explicitly
in subsectio 916, where we observe that in the chiral lidt ¢ombinationl — m?2 /m2_ is

2
proportional to%.

From a non-perturbative point of view, having physical masi®s vary with the cutoff seems
rather peculiar; indeed, the particle masses are physieaitdgies that would be natural to hold
fixed. And, even though a mass independent approach is tieadisepossible, there is no guar-
antee that any given quark mass ratio will be universal betwschemes. Finally, the lattice
approach itself is usually implemented with physical pdetmasses as input. As such it is not a
mass independent regulator, making a perturbative majabitattice results rather subtle.

A third complaint against the above argument is that one Ish&imply do the matching at
some high energy, say 100 GeV, where “instanton” effecteapenentially suppressed and ir-
relevant. This point of view has several problems. Firstrent lattice simulations are not done
at miniscule scales and non-perturbative effects are ptes®l substantial. Furthermore, the
exponential suppression of topological effects is in theeiise coupling, which runs logarithmi-
cally with the scale. As such, the non-perturbative sumgioesis a power law in the scale and
straightforward to estimate.

Since the eta-prime mass is expected to be of afdgy, we know from the previous renor-
malization group discussion how it depends on the bare eugipl the continuum limit

My o ~em Y/ 260ad) g PL/BG, (215)
a

While this formula indeed shows an exponential suppressidn g2, this is cancelled by the
inverse cutoff factor in just such a way that the mass of thigsjral particle remains finite. The
ambiguity in the quark mass splitting is controlled by thesmaplittingm,, — m,, as well as
being proportional tong; — m,,. Consideringn; = 5 MeV at a scale of: = 2 GeV, a rough
estimate of the order of thequark mass shift is

My — Mgy,

N
qc

a number comparable to typical phenomenological estimatss result depends on the scale
but that dependence is only logarithmic and given by Eqg.)(2Additional flavors will reduce
the size of this effect; with the strange quark present,austhbe proportional tengm.
A particularly important observation is that the exponeateolling the coupling constant
suppression in E@. 215 is substantially smaller than th&sidal instanton action
1 872 82

= << —

26095 (11 —2nys/3)g3 93
This difference arises because one needs to consider tppalexcitations above the quantum,
not the classical, vacuum. Zero modes of the Dirac operatostél responsible for the bulk of
the eta prime mass, but naive semi-classical argumentsgbyranderestimate their effect.

> (ma — my) = O(1 MeV), (216)

(217)
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9.4 General masses in two flavor QCD

Given the confusion over the meaning of quark masses, itésdnting to explore how two flavor
QCD behaves as these quantities are varied, including thsilplity of explicit CP violation
through the Theta parameter. The full theory has a rathiepfiase diagram, including first and
second order phase transitions, some occuring when nohe gffark masses vanish.

We consider the quark fieldsas carrying implicit isospin, color, and flavor indices. As®e
as usual that the theory in the massless limit maintain§ the) flavored chiral symmetry under

W —> ei75ra¢a/2w
P — PeeTadal2, (218)

Herer, represents the Pauli matrices generating isospin rotatidhe angleg,, are arbitrary
rotation parameters.

We wish to construct the most general two-flavor mass termdtbta the massless La-
grangian. Such should be a dimension 3 quadratic form inefraibn fields and should trans-
form as a singlet under Lorentz transformations. For siaitglionly consider quantities that are
charge neutral as well. This leaves four candidate fieldéngithe general form for considera-
tion

maph + mahTarh + imaPyse + imarpysTaib. (219)

The first two terms are naturally interpreted as the averagekgmass and the quark mass dif-
ference, respectively. The remaining two are less convealti Thems term is connected with
the CP violating parameter of the theory. The final term has been used in conjunction with
the Wilson discretization of lattice fermions, where ité$arred to as a “twisted mass” [85,/86].
Its utility in this context is the ability to reduce latticésdretization errors. We will return to this
term later when we discuss the effect of lattice artifactsloinal symmetry.

These four terms are not independent. Indeed, considebthesdlavored chiral rotation in
ther direction, iy — €7375/2¢). Under this the composite fields transform as

Y — cos(0)y + sin(Q)iyys Ty (220)
Y13y — cos(0)rstp + sin(0)iysp (221)
iWprsysty  — cos(0)iT3ysh — sin(0) iy (222)
iWpysp — cos(0)ipysh — sin(0)Pra (223)

This rotation mixesn; with m4 andms with m3. Using this freedom, we can select any one of
them; to vanish and a second to be positive.

The most common choice is to e, = 0 and usen; as controlling the average quark mass.
Thenms gives the quark mass difference, while CP violation appganss. This, however, is
only a convention. The alternative “twisted mass” scheni 8], makes the choicer; = 0.
This usesn, > 0 for the average quark mass amg becomes the up-down mass difference. In
this caseny, becomes the CP violating term. It is amusing to note that adawn quark mass
difference in such a formulation involves the naively CP édgs. The strong CP problem has
been rotated into the smallness of the;y) term, which with the usual conventions is the mass
difference. But because of the flavored chiral symmetryh lsets of conventions are physically
equivalent.
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For the following, take the arbitrary choiee, = 0, although one should remember that this
is only a convention and we could have chosen any of the faampeters in Eq[[(219) to vanish.
With this choice, two flavor QCD, after scale setting, defgeoil three mass parameters

maph + mahTsh + imsysip. (224)

It is the possible presence oi3 that represents the strong CP problem. As all the parame-
ters are independent and transform differently under tihensgtries of the problem, there is no
connection between the strong CP problem andor m.

As discussed extensively above, the chiral anomaly is resple for the iso-singlet rotation

W — ei75¢/21/1
P — Pets9/2 (225)

not being a valid symmetry, despite the fact thatnaively anti-commutes with the massless
Dirac operator. Subectidn 8.1 showed this anomaly is nisetymarized via Fujikawa’s [66]
approach where the fermion measure in the path integrakpipka non-trivial factor. In any
given gauge configuration only the zero eigenmodeB abritribute, and by the index theorem
they are connected to the winding number of the gauge couafigar The conclusion is that the
above rotation changes the fermion measure by an amoumdiegenon-trivially on the gauge
field configuration.

Note that this anomalous rotation allows one to remove apgltmical term from the gauge
part of the action. Naively this would have been yet anotleameter for the theory, but by
including all three mass terms for the fermions, this can oebed. For the following we
consider that any topological term has thus been rotatey. éfger this one is left with the three
mass parameters above, all of which are independent anén¢l® physics.

These parameters are a complete set for two flavor QCD; haywtbigchoice differs some-
what from what is often discussed. Formally we can define theengonventional variables
as

My = M1 + Mo + ims3 (226)
mg = mi — Mo + iMms (227)
i© _ m% — m% — m% + 2imims (228)

\/m‘l1 + m% + m% + 2m%m§ + 2m%m§ — Qm%mg.

Particularly for®, this is a rather complicated change of variables. For regederate quarks in
the context of the phase diagram discussed below, the \esifl,, mo, ms} are more natural.

9.5 The strong CP problem and the up quark mass

Strong interactions preserve CP to high accuracy [87]. Dmlstwo of the three possible mass
parameters seem to be needed. With the above conventiaasiatural to ask why isng so
small? It is the concept of unification that brings this gioesto the fore. We know that the
weak interactions violate CP. Thus, if the electroweak dmdtrong interactions separate at
some high scale, shouldn’t some remnant of this breaking\&# How is CP recovered for the
strong force?
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\%

Fig. 18. Themsy andmg terms warp the Mexican hat potential into two separate nanifhe direction of
the warping is determined by the relative size of these params. Figure taken from Ref. [B1].

One possible solution is that there is no unification and dweilsl just consider the weak
interactions as a small perturbation. Another approacblves adding a new dynamical “ax-
ion” field that couples to the quarks through a couplingitgsw. Shifts in this field makens
essentially dynamical, and potentially the theory couldx¢oms = 0.

There is a third proposed solution, being criticized hdrat the up quark mass might vanish.
This would naively allow a flavored chiral rotation to remagy phases from the quark mass
matrix. Why is a vanishing up quark mass not a sensible aphfod&rom the above, one can
define the up quark mass as a complex number

My = M1 + Mo + ims3. (229)

But the quantitiesn,, ma, andmsg are independent parameters with different symmetry prop-
erties. With our conventions,; represents an iso-singlet mass contributien,is isovector in
nature, andns is CP violating. And, as discussed earlier, the combinatigr- m, = 0 is scale
and scheme dependent. The strong CP problem only requiadkram So while it may be true
formally that

mi1+mo+img=0 = m3 =0, (230)

this would depend on scale and might well be regarded as ‘\reot wrong.”

9.6 The two flavor phase diagram

As a function of the three mass parameters, QCD has a ratinieabe phase diagram that we
now discuss. Using simple chiral Lagrangian arguments,dan be qualitatively mapped out.
To begin we consider the composite fields similar to those ursthe earlier discussion of pions
as Goldstone bosons

o~ P n~ i@%’ﬂﬁ
T~ iysTY ag ~ P7. (231)
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Fig. 19. In them1, m2 plane,m?m can pass through zero, giving rise to pion condensation kiag-like
transition. Figure taken from [25].

In terms of these, a natural model for a starting effectiviepiial is

V= Mo*+ 7 —v?)? —mio —maags — man
+a(n? +a3) — B(no + do - 7). (232)

Here« and g are “low energy constants” that bring in a chirally symmetoupling of(o, 7)
with (n, do). As discussed in Ref. [25], the sign of theerm is suggested so that,, < m,,.

This potential augments the famous “Mexican hat” or “winétled potential discussed ear-
lier, in which the Goldstone pions are associated with thtedft@ctions running around at con-
stanto? + 72 = v2. Thems, andms terms do not directly affect the andr fields, but induce an
expectation value fosig; andn, respectively. This in turn results in theand 5 terms inducing
a warping of the Mexican hat into two separate minima, aschlegt in Fig[[IB. The direction of
this warping is determined by the relative sizenof andms; mo (ms) warps downward inrg
(o) direction. If we now turn onny, this will select one of the two minimum as favored. This
gives rise to a generic first order transitiomat = 0.

There is additional structure in the,, ms plane whenmg vanishes. In this situation the
quadratic warping is downward in thedirection. For largém; | only o will have an expectation,
with sign determined by the sign af,. The pion will be massive, but withs reducing the
neutral pion mass below that of the charged pions. If nomis decreased in magnitude at fixed
ms, eventually the neutral pion becomes massless and corslede® this occurs is sketched
in Fig.[19. An order parameter for the transition is the exaan value of ther, field, with the
transition being Ising-like. It occurs in a region where the flavors have opposite signs for
their masses, i.dm;| < |ma].

This structure can also be understood in terms of the exfi@tizalues for the pion and sigma
fields as functions of the average quark mass while holdiagjttark mass difference fixed. This
is sketched in Fid_20. The jump inas we go from large positive to large negative masses is
split into two transitions with the pion field acquiring anpectation value in the intermediate
region.

Note that this transition occurs when both, andm, are non-vanishing but of opposite
sign. At the transition the correlation length diverges.isTéhows that it is possible to have
significant long distance physics without small Dirac eigdues. In contrast, we see that there
is no transition at the point where only one of the quark masaeishes. In this situation there
is no long distance physics despite the possible existefrsraall Dirac eigenvalues.

Putting this all together, we obtain the phase diagram bketin Fig[2ll. There are two
intersecting first order transition surfaces, onémat = 0, ms # 0) and the second &in; <
ma, mg = 0). These each occur whefe= 7. However, note that with non-degenerate quarks
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Fig. 20. With a constant up-down quark mass difference,uh®jin the chiral condensate splits into two
second order transitions. The order parameter distingngghe intermediate phase is the expectation value
of the neutral pion field. Figure taken from Ref. [88].

there is also ® = = region atms = m; + € for small but non-vanishing where there is no
transition. The absence of a physical singularityngt= 0 whenm, # 0 lies at the heart of the
problem in defining a vanishing up quark mass.

In the next section we will see that the structure inthg mo plane is closely related to an
interesting lattice artifact in the degenerate quark linfibki [89] discussed a possible phase
with spontaneous parity violation with the Wilson fermianrrulation. Indeed, lattice artifacts
can modify the effective potential in a similar way to the term and allow the CP violating
phase at finite cutoff to include part of the, axis as well.

10 Lattice fermions

We now have a fairly coherent picture of how the spectrum efigescalar mesons is connected
with chiral symmetry in the continuum theory. The anomalgysl a crucial role in introducing
the Theta parameter into the theory and contributing tgtieass. Throughout we have assumed
that we have in hand a regulator to define the various congfisitls, but we have not been
specific in how that regulator is formulated. Early sectimicated the lattice should provide a
natural route to a non-perturbative formulation, but weehpestponed the details until some of
the desired continuum features were elucidated.

The lattice can be regarded as a fully non-perturbative idiefinof a quantum field theory.
As such, the entire structure explored in previous sectéhmild follow as we approach the
continuum limit. But there are a variety of interesting amdtte issues concerning how this
comes about. When the lattice is in place, all infinities ia tieory are automatically removed.
However we have argued that the anomaly is closely tied tditlkeegences in the theory. As such
the physics associated with the anomaly must appear somewhemny valid lattice formulation.
If we try to formulate a lattice version of QCD with all clasal symmetries in place, there is no
way for this to happen. In particular, this imposes suldketor how the action for the quarks is
formulated. Here we go into this problem in some detail anglae some of the methods for
dealing with it.
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Fig. 21. The full phase diagram for two flavor QCD as a functibthe three mass parameters. It consists of
two intersecting first order surfaces with a second ordee @ftong curves satisfyings = 0, [m1| < |mz|.
There is no structure along the,, = 0 line except when both quark masses vanish. Figure from B#F. [

10.1 Hopping and doublers

The essence of lattice doubling already appears in the goemiechanics of the simplest Fermion
Hamiltonian in one space dimension

H=iK» al ja;—alaj. (233)
J
Herej is an integer labeling the sites of an infinite chain andd¢hare Fermion annihilation
operators satisfying standard anti-commutation relation
{aj, aHJr = ajaz + azaj =0k (234)

The fermions hop from site to neighboring site with ampléud; thus, we refer tak as the
“hopping parameter” and by convention take it to be positiféne bare vacuun) satisfies
a;]0) = 0. This vacuum is not the physical one, which requires congirga filled Dirac sea.
Energy eigenstates in the single Fermion sector

)= xjall0) (235)
J

can be easily found in momentum space

X (9) = €Y xo (236)
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where we can restrictm < ¢ < 7. The resulting energy is
E(q) = 2K sin(q). (237)

The physical vacuum fills all the negative energy statesthose with—7 < ¢ < 0.

On this vacuum, consider constructing a Fermionic wave @tk exciting a few modes of
small momentung. This packet will have a group velociti¥ /dq ~ 2K that is positive. Thus
it moves to the right and represents a right-moving ferm{n the other hand, a wave packet of
low energy can also be produced by exciting momenta in thait§icof ¢ ~ 7. This packet will

have group veIocityfl—‘;J‘ ~ —2K and therefore be left moving. The essence of the Nielsen
q=T

Ninomiya theorem[[90] is that we must have both types of exicih. We will go into this in
more detail later, but for this one dimensional case theogity in ¢ requires the dispersion
relation to have an equal number of zeros with positive amgative slopes. If we now consider
a two component spinor to describe the fermion, we will haakependent states corresponding
to each component. This is the so called “doubling” issue.

As a preliminary to later discussion, here we concentrata étamiltonian version of the
Wilson approach to remove the doublers. Continuing to workrie dimension, consider a two
component spinor

W= <Z> (238)

wherea andb are distinct fermion annihilation operators on the lattsites. The so called
“naive” lattice Hamiltonian begins with the simple hoppicase of above and adds in the lower
components and a mass term that mixes the upper and loweooemis

H = ’LKZ a;+1aj — a;aj+1 - b;'-‘-lbj + b;»bj+1 + MZaIbJ + b;aj. (239)
J J

Introducing two by two Dirac matrices

0 1 0 —i 1 0
’70—01—<1 0>7 71—02—(2- OZ>7 75—03—(0 _1), (240)
and defining ¢ = 11+, we write the Hamiltonian compactly as
H=Y " K@ m;—omij) + MY 0. (241)
J J

This looks very much like the continuum Dirac Hamiltoniariiwthe derivative term represented
on the lattice by a nearest neighbor difference. Chiral sgimyris manifest in the possibility of
independent rotations of theandb type particles when the mass term is absent. The latter mixes
these components and opens a gap in the spectrum.

As before, the single particle states are easily found byiEptransformation and satisfy

E? = 4K?sin*(q) + M? (242)

At each momentum there is one positive and one negative gstate. Again, we are to fill the
negative energy sea to form the physical vacuum. The daylsgue is that there are low energy
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excitations that satisfy the Dirac equation appearing lavth ~ 0 andg ~ 7. The physical
momentak of the latter excitations appear in expanding about pikie ¢ — 7. These states
have a smooth spatial dependence in a redefinedietd (—1)7+;. The doublers af ~ 7 are
still with us.

10.2 Wilson Fermions

One way to remove the degeneracy of the doublers is to makmittieg of the upper and lower
components momentum dependent. A simple way of doing thsspsaposed by Wilsor [10].
To our Hamiltonian model, we add one more term

H = ’LKZ a;+1aj — a;ajJrl — b;_‘_lbj + b;ijrl_'—

J
M Z G;bj + b;r-aj —rK Z a;r-bj-f-l + b;aj+1 + b;r-Jrlaj + G;Jrlbj
' J

J ;!
= Z K@ (=) — ¥ (n + i) + Z M1, (243)
J J

Now the spectrum satisfies
E? = 4K?sin?(q) + (M — 2rK cos(q))?. (244)

The doublers aj ~ 7 are increased in energy relative to the states-at). The physical particle
mass is nown = M — 2r K while that of the doubleris a/ + 2r K.

Whenr becomes large, the dip in the spectrum of near 7 actually becomes a maximum.
This is irrelevant for our discussion, although we note thatcase: = 1 is somewhat special.
For this value, the matricés; + 1)/2, which determine how the Fermions hop along the lattice,
are projection operators. In a sense, the doubler is remiogeduse only one component can
hop. This choice = 1 has been the most popular in practice.

The hopping parameter has a critical value at

K. = M (245)
2r
At this point the gap in the spectrum closes and one specié®iwhion becomes massless.
The Wilson term, proportional te, still mixes thea andb type particles; so, there is no exact
chiral symmetry. Nevertheless, in the continuum limit tiepresents a candidate for a chirally
symmetric theory. Before the limit, chiral symmetry doe$ mimvide a good order parameter.

Now we generalize this approach to the Euclidean path iatégrmulation in four space-

time dimensions. In the continuum, one usually writes ferfiee fermion action density

VDY = P(d+m)y (246)
or in momentum space
P(ip +m)y. (247)

By convention we use Hermitean gamma matrices. Note/thatthe sum of Hermitian and anti-
Hermitian parts. In the continuum the former is just a comstdoe mass. A hermitian operator
appears in the combinatiop D, but we don’t need that just now.
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A matrix can be diagonalized when it commutes with its adjdimen it is called “normal.”
For the naive continuum operator this is the case, and wehsgalt eigenvalues ab lie along
a line parallel to the imaginary axis intersecting the redd atm. This simple structure will be
lost on the lattice.

As discussed earlier, a simple transcription of derivativeto the lattice replaces factors of
p with trigonometric functions. Thus the naive lattice antllecomes

) <2 Z Yusin(pya) + m) ) (248)
I

where we have explicitly included the lattice spacingFor small momentum this reduces to
the continuum resul(iv,.p,, + m)y. Now let one component gf get large and be neat/a.
Then we again have small eigenvalues and a nearby pole irrtipagator. As any of the four
components of momentum can be néar = there are a total of 16 places in momentum space
that give rise to a Dirac like behavior. The naive fermiori@tgives rise to 16 doublers.

As in the earlier example, the Wilson solution adds a monmardapendent mass. Wishing
to maintain only nearest neighbor terms, it also involvagtrometric functions. To maintain
hyper-cubic symmetry, we put in the Wilson term symmethcdr all space-time directions.
For simplicity we set the Wilson parametefrom before to unity. Explicitly for free fields we
consider the momentum space form

— —(1 o
YDw = (a Z(Z’YM Sln(pua) +1- COS(pHa)) + m) v (249)
"
Now for a momentum component nearthe eigenvalues are of ordéfa in size. Note that
the lattice artifacts in the propagator start at orgter, rather tharO(a?) as for naive fermions.
The eigenvalue structure @iy is rather interesting. The eigenvalues for the free Wilsmoty

occur at

i 1
— 4t “in2 z E 1 — cos 250
A p % sin”(pua) + a s cos(ppa) +m (250)

The eigenvalues of this free operator lie on a set of “nestetks,” as sketched in Fig. 22. Note
thatm <> —m is not a symmetry. Naively it would be in the continuum, butnasdiscussed
earlier, it cannot be so in the quantum theory when one hasidmomber of flavors.

Note that to obtain real eigenvalues in Hg. (250), each comptof the momentum must be
an integer multiple ofr. There are actually several critical values that can gise t® massless
fermions. Form = 0, —2, —4, —6, —8 we havel, 4, 6, 4, 1 massless species. When interactions
are present these values of the mass will also be renorrdallze/hether a continuum limit at
these alternative points is useful has not been investigate

Rescaling to lattice units and restoring the hopping pataméhe Wilson fermion action
with the site indices explicit becomes

Dwij=0ij+ K> (1= %)dij4e, + (1+7)0ije,- (251)

o

“Actually the 6 flavor case at m=-4 does have a discrete symrifet will protect against additive mass renormal-
ization.
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Fig. 22. The eigenvalue spectrum of the free Wilson fermiperator is a set of nested circles. On turning
on the gauge fields, some eigenvalues drift into the operomegi Some complex pairs can collide and
become real. These are connected to gauge field topologyteRigken from Ref[[91].

By taking the coefficient of the Wilson term as unity we have projection operators i th
hoppings. The physical fermion mass is read off from the kmamentum behavior as =
+(1/K — 8). This vanishes at & = K, = 1/8.

Here we consider that the gauge fields are formulated as withagroup valued matrices on
the lattice links. These are to be inserted into the aboveinggerms. One could use the simple
Wilson gauge action as a sum over plaquettes

S, = g > ReTr U, (252)
p

although this specific form is not essential the qualitatiaéure of the phase diagram. When
the gauge fields are turned on, the dynamics will move theiter@igenvalues around, partially
filling the holes in eigenvalue pattern of F[g.]22. Some eigéres can become real and are
related to gauge field topology [[78].

For the free theory the Hermitian and anti-Hermitian paftshe action commute. This
ceases to be true in the interacting case since both terni@ic@auge matrices that themselves
do not commute. Thus the left eigenvalues are generallgraifft from right ones. Nevertheless,
it is still true that the eigenvalues either appear in complmjugate pairs or they are real. This
follows from~s Hermiticity, Dt = 5 Ds. Sinceys has unit determinantD — \| = 0 implies
|IDT — X\ =|D — \|* = 0.

A technical difficulty with this approach is that gauge iatetions will renormalize the pa-
rameters. To obtain massless pions one must finely K@ K., ana priori unknown function
of the gauge coupling. Despite the awkwardness of suchguitiis is how numerical simula-
tions with Wilson quarks generally proceed. The hoppingpuater is adjusted to get the pion
mass right, and one assumes that the remaining predictforisri@nt algebra reappear in the
continuum limit.

Note that the basic lattice theory has two parameterand K. These are related to bare
coupling,3 ~ 6/g2, and quark masg1/K — 1/K.) ~ m,. We will now turn to a discussion of
this relation in more detail.
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10.3 Lattice versus continuum parameters

As emphasized earlier, QCD is a remarkably economical thimotrerms of the number of ad-
justable parameters. First of these is the overall strotegastion scale),.q. This is scheme
dependent, but once a renormalization procedure has bbsresk it is well defined. It is not
independent of the coupling constant, the connection bfegl by asymptotic freedom. In
addition, the theory depends on the renormalized quarkesass or more precisely the dimen-
sionless ratiosn,; /A4.q. As with the overall scale, the definition ot; is scheme dependent.
The two flavor theory with degenerate quarks &= 0 has one such mass parameter. As we
wish to formulate the theory with a lattice cutoff in pladeete is a scale for this cutoff. As with
everything else, it is convenient to measure this in unithefoverall scale; so, a third parameter
for the cutoff theory isiA 4.4, where one can regardas the lattice spacing.

How the bare parameters behave as the continuum limit is\tekes discussed rather ab-
stractly in Sectionl5. The goal here is to explore some ofhleddttice artifacts that arise with
Wilson fermions[[10]. On the lattice it is generally easework directly with lattice parameters.
One of these is the plaquette couplifigvhich, with the usual conventions, is related to the bare
coupling3 = 6/g2. For the quarks, the natural lattice quantity is the “hogpparameter’x’.
And finally, the connection with physical scales appearghgdattice spacing.

The set of physical parameters and the set of lattice pasamate, of course, equivalent, and
there is a well understood non-linear mapping between them

{i, achd} — {B,K}. (253)
chd

Of course, to extract physical predictions we are intetestehe continuum limitaA,.q — 0.
For this, asymptotic freedom tells us we must tgke> oo at a rate tied to\ ,.q. Simultaneously
we must take the hopping parameter to a critical value. Withmal conventions, this takes
K — K. — 1/8atarate tied to desired quark massFig.[23 sketches how the continuum limit
is taken in the3, K plane. Here we wish to further explore this phase diagrarh pétrticular
attention to hopping parameters larger tHén This discussion is adapted from Ref. [91] and
adds the possible twisted mass term to the exposition frof[82].

10.4 Artifacts and the Aoki phase

We previously made extensive use of an effective field thémdescribe the interactions of the
pseudo-scalar mesons. Here we will begin with the simptash for the two flavor theory and
then add terms to mimic possible lattice artifacts. The leg is framed as before in terms of
the isovector pion field: ~ iy)y571 and the scalar sigma ~ 7). the starting point for this
discussion is the canonical “Mexican hat” potential

Vo = Mo? + 72 —v?)? (254)

schematically sketched earlier in Fid. 6. The potential @a&ymmetry unde©(4) rotations
amongst the pion and sigma fields expressed as the four &ctofo, ). This represents the
axial symmetry of the underlying quark theory.

As discussed before, the massless theory is expected ttaggously break chiral symmetry
with the minimum for the potential occurring at a non-vammsgfwvalue for the fields. As usual,
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continuum limit

0 beta infinity

Fig. 23. The continuum limit of lattice gauge theory with 8dh fermions occurs @& — oo andK — 1/8.
Coming in from this point to finite beta is the cur¥é.(3), representing the lowest phase transitiorkin
for fixed beta. The nature of this phase transition is a d&ioaatter, discussed in the text. Figure taken
from Ref. [91].

we take the vacuum to lie in the sigma direction with) > 0. The pions are then Goldstone
bosons, being massless because the potential providegnigr ba oscillations of the fields in
the pion directions. Also as discussed before, we includaaakgmass by adding a constant
times the sigma field

Vi = —mo (255)

This explicitly breaks the chiral symmetry by ‘“tilting” th@otential as sketched in Figl 7. That
selects a unigue vacuum which, far> 0, gives a positive expectation for sigma. In the process
the pions gain a mass, with2 ~ m.

Because of the symmetry &f), it does not matter physically in which direction we tilt the
vacuum. In particular, a mass term of form

mo — mcos(f)o + msin()ms (256)

should give equivalent physics for afly In the earlier continuum discussion we used this free-
dom to rotate the second term away. However, as we will séticdartifacts can break this
symmetry, introducing the possibility of physics at finidéétice spacing depending on this angle.
As mentioned before, the second term in this equation is ishegually called a “twisted mass.”

The Wilson term inherently breaks chiral symmetry. Thid gie rise to various modifica-
tions of the effective potential. The first correction is egfed to be an additive contribution to
the quark mass, i.e. an additional tilt to the potential.sTtheans that the critical kappa, defined
as the smallest kappa where a singularity is found inZh& plane, will move away from the
limiting value of1/8. Thus we introduce the functiol.(5) and imagine that the mass term is
modeled with the form

m — c1(1/K = 1/K.(B)). (257)

In general the lattice modification of the effective potahtvill have further corrections of
higher order in the effective fields. A natural way to incledeh is as an expansion in the chiral
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Fig. 24. Lattice artifacts could quadratically warp theeeffve potential. If this warping is downward in
the sigma direction, the chiral transition becomes firseomdithout the pions becoming massless. Figure
taken from Ref.[[91].

fields. With this motivation we include a term in the potehtiiform cyo?. Including these
ideas in the effective model, we are led to

V(7 0) = Mo? + 72 —vH)? —c1(1/K — 1/ K.(B))o + ca0?. (258)

Such aterm was considered in Refs.[92,93]. The predictadgostructure depends qualitatively
on on the sign of,, but a priori we have no information on tffidndeed, as it s a lattice artifact,
it is expected that this sign might depend on the choice ofjgaction. Note that we could have
added a term liker?, but this is essentially equivalent singé = (¢ + 72) — o2, and the first
term here can be absorbed, up to an irrelevant constanthiatstarting Mexican hat potential.

First consider the case whesis less than zero, thus lowering the potential energy when th
field points in the positive or negative sigma direction.sTquadratic warping helps to stabilize
the sigma direction, as sketched in [igl 24, and the piorsedesbe true Goldstone bosons when
the quark mass vanishes. Instead, as the mass passes theonighie have a first order transition
as the expectation af jumps from positive to negative. This jump occurs withoug physical
particles becoming massless.

Things get a bit more complicatedd > 0, as sketched in Fi§.25. In that case the chiral
transition splits into two second order transitions sefgaray phase with an expectation for the
pion field, i.e. (%) # 0. The behavior is directly analogous to that shown in Eig.tB8,main
difference being that now the two quarks are degeneratee$ie pion field has odd parity and
charge conjugation as well as carries isospin, all of thgsersetries are spontaneously broken
in the intermediate phase. As isospin is a continuous gritigp phase will exhibit Goldstone
bosons. The number of these is two, representing the tworftgeoerators orthogonal to the
direction of the expectation value. If higher order termsndd change the order of the transi-
tions, there will be a third massless particle exactly attthasition endpoints. In this way the

8Ref. [94] has argued that should be positive. We will return to this argument a bitratethis section.
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Fig. 25. If the lattice artifacts warping the potential upd/ién the sigma direction, the chiral transition
splits into two second order transitions separated by agoivagre the pion field has an expectation value.
Figure taken from Refl [91].

theory reveals three massless pions exactly at the tramsjtas discussed by Aoki [89]. The
intermediate phase is usually referred to as the “Aoki pha@ssuming thisc, > 0 case, Fig. 26
shows the qualitative phase diagram expected.

Note the similarity of this discussion to that leading to fese diagram in Fig. 21. Indeed,
lattice artifacts can lead to the spontaneously broken @Rmefound there for thémy, mo)
plane to open up and remain present for degenerate quarksAdhi phase is closely related to
the possibility of CP violation a® = 7 for unequal mass quarks. Note also that this connection
with the earlier continuum discussion shows that with anmgaber of flavors, the spontaneous
breaking of parity is the normal expectation whenever thgpliteg parameter exceeds its critical
value. Indeed, in this case the Aoki phase is less a lattiifactrthan a direct consequence of
the CP violation expected in the continuum theory at .

10.5 Twisted mass

The ¢, term breaks the equivalence of different chiral directiofkis means that physics will
indeed depend on the angleif one takes a mass term of the form in EQ._(256). Consider
complexifying the fermion mass in the usual way

mp = mp PR +m Py = Re m Py + ilm m Pyz1). (259)
The rotation of Eq.[(236) is equivalent to giving the up andidajuark masses opposite phases

my — et %m, (260)

mg — e ¥my (261)

Thus motivated, we can consider adding a new mass term tattieeltheory

1 1T Y5t ~ s (262)
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Fig. 26. The qualitative structure of thie K plane including the possibility of an Aoki phase.

This extends our effective potential to
V(#,0) = No® + 7 = v*)? —e1(1/K = 1/Kc(8))o + c20” — pms (263)

The twisted mass represents the addition of a “magnetic fogldjugate to the order parameter
for the Aoki phase.

There are a variety of motivations for adding such a term tolattice action[[9%, 96]. Pri-
mary among them is tha®(a) lattice artifacts can be arranged to cancel. With two flawidrs
conventional Wilson fermions, these effects change siggoamg from positive to negative mass,
and if we put all the mass into the twisted term we are half wetyvben. It should be noted that
this cancellation only occurs when all the mass comes framwiisted term; for other combina-
tions with a traditional mass term, some lattice artifadt®¢@a) will survive. Also, although it
looks like we are putting phases into the quark masses, taeme! between the two flavors. The
resulting fermion determinant remains positive and we ayekimg at® = 0. Furthermore, the
algorithm is considerably simpler and faster than eitherlayp [69, 97] or domain wall [98, 99]
fermions while avoiding the diseases of staggered quafG][IAnother nice feature of adding
a twisted mass term is that it allows a better understandirigenAoki phase and shows how
to continue around it. Figs. 7 ahdl28 show how this workslierdaser, > 0 andcy < 0,
respectively.

Of course some difficulties come along with these advantdgjest, one needs to know..
Indeed, with the Aoki phase present, the definition of thigrdity is a bit fuzzy. And second, the
mass needs to be larger than thartifacts. Indeed, as Fids.]27 dnd 28 suggest, if it is nep th
one is really studying the physics of the Aoki phase, not threect continuum limit. This also
has implications for how close to the continuum one must study this structure; in particular,
one must have large enough so the Aoki phase does not extend into the doelgien.

The question of the sign @ remains open. Simulations suggest that the usual Aoki phase

with ¢o > 0 is the situation with the Wilson gauge action. Recently f@4] has pointed out

that with the twisted mass term present, all eigenvalueh®product of gamma five with the
Dirac operator will have non-zero imaginary parts. Thusdedr, < 0, the phase transition at
non-vanishing twisted mass must occur where the fermioarohéhant does not vanish on any
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Fig. 27. Continuing around the Aoki phase with twisted masss sketch considers the case> 2 where
the parity broken phase extends over a region along the kappaFigure taken from Ref. [91].
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Fig. 28. Asin Fig[2¥, but for the case < 0 so the chiral transition on the kappa axis becomes first order
Figure taken from Refl [91].
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configuration. This contrasts with tli&, > 0 case where small eigenvaluesiofare expected

occur in the vicinity of the critical hopping. This at firsigsit makes:; < 0 seem somewhat
unnatural; however, this is not a proof since we saw in Sulsel®.8 that phase transitions
without small eigenvalues of the Dirac operator do occuhedontinuum theory for two flavors
with non-degenerate quarks.

This picture of the artifacts associated with Wilson ferndgaises some interesting ques-
tions. One concerns the three flavor theory. As discussediousy, in this case a parity broken
phase becomes physical with negative mass. Indeed, thgemeate quarks of negative mass
represent QCD with a strong CP angle- 7, for which spontaneous breaking of CP is expected.
In some sense the Aoki phase becomes physical. Also, witle titetvors the twisting process is
not unique, with possible twists in thg or As directions. For example, using onks would
suggest a possible twisted mass of form ~ e2™/3, my ~ e=27/3 m, ~ 1. Whether there is
an optimum twisting procedure for three flavors is unclear.

Another special case is one flavor QCDI[78]. In this situatlmanomaly removes all chiral
symmetry, and the quark condensate loses meaning as armpardeneter. The critical value of
kappa where the mass gap disappears is decoupled from thteopaero physical quark mass.
There is a parity broken phase, but it occurs only at sufftiemegative mass. And from the
point of view of twisting the mass, without chiral symmethgte is nothing to twist other than
turning on the physical paramei®r

11 Lattice actions preserving chiral symmetry

11.1 The Nielsen-Ninomiya theorem

As discussed some time agdo [90], the doubling issue is gldi to topology in momentum
space. To see how this works, let us first establish a gammarnahvention

'7—01®5—<2 g) (264)
0 —i

70=02®I=<Z. o> (265)
10

75=03®I=(0 _1). (266)

Now suppose we have an anti-Hermitian Dirac operatdhat anti-commutes withs
D = —D" = —~45Dns. (267)

Considering this quantity in momentum space, its most gaiiem is

D(p) = <_29(p) Z(Op )) (268)

wherez(p) is a quaternion

2(p) = zo(p) +iG - Z(p). (269)
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Thus we see that any chirally symmetric Dirac operator mapsiemtum space onto the space
of quaternions.

The Dirac equation is obtained by expanding the momenturmespperator around a zero,
i.e. D(p) ~ p = v,.p,. Now consider a three dimensional sphere embedded in imersional
momentum-space and surrounding the zero with a con&®ant- p?. The above quaternion
wraps non-trivially about the the origin as we cover thisesgh Here is where the topology
comes in[[90, 101]. Momentum space is periodic over Britoednes. We must havep) =
z(p + 27n) wheren is an arbitrary four vector with integer components. Beeaisthis, we
can restrict the momentum components to lie in the range< p, < w, and we cannot have
any non-trivial topology on the surface of this zone. Any piag associated with a zero irfp)
must unwrap somewhere else before we get to the surface missu (p) remains finite, any
zero must be accompanied by another wrapping in the oppesiee. Because of doubling, the
16 species with naive fermions split up into 8 zeros of eaclsse

The above argument only tells us that a chiral lattice thenungt have an even number of
species. The case of a minimal doubling with only two speidda fact possible, although
all methods presented so far [102] appear to involve a bngatd hyper-cubic symmetry. This
breaking is associated with the direction between the zéhis makes one direction special,
although it might be possible to avoid it by having the zearsfa symmetric lattice using the
periodicity of momentum space. This has not yet been demaiast

In earlier sections we discussed how an odd number of flaaissd some interesting issues;
in particular the sign of the mass becomes relevant. In gpithis, there seems to be no con-
tradiction with having, say, three light flavors in the comtim with a well defined chiral limit.
The above lattice argument, however, seems to indicatelgswith maintaining an exact chiral
symmetry with an odd number of flavors. Whether this appatenflict is serious is unclear.
One could always start with a multiple fermion theory andchthgith something like a Wilson
term, give a few species masses while leaving behind an oadbetof massless fermions. This
will involve some parameter tuning, but presumably can giveasonable chiral limit for odd
Ny > 2. This does not obviate the fact emphasized earlier that evitir one flavor there must
not be any remaining chiral symmetry even in the continuum.

11.2 Minimal doubling

Several chiral lattice actions satisfying the minimal ctind of N; = 2 flavors are known.
Some time ago Karsten [103] presented a simple form by ingeatfactor ofiv, into a Wilson
like term for space-like hoppings. A slight variation apgezhin a discussion by Wilczek [104]
a few years later. More recently, a new four-dimensionabacivas motivated by the analogy
with two dimensional graphene [101]. Since then numerotatians have been presented [102,
105+108].

The main potential advantage with these approaches lielsein tltra-locality. They all
involve only nearby neighbor hoppings for the fermions. Jliuey should be extremely fast
in simulations while still protecting masses from additremormalization and helping control
mixing of operators with different chirality. The approaalo avoids the uncontrolled errors as-
sociated with the rooting approximation discussed |at@160.109,110]. On the other hand, all
minimally-doubled actions presented so far have the ab@mioned disadvantage of breaking
lattice hyper-cubic symmetry. With interactions, thishiélad to the necessity of renormaliza-
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tion counter-terms that also violate this symmetry [11 e Extent to which this will complicate
practical simulations remains to be investigated.

Minimally-doubled chiral fermions have the unusual praperf a single local field creating
two distinct fermionic species. Here we discuss a pointtspd method for separating the effects
of the two flavors which can be created by a single fermion fi€ldr this we will work with
one specific form for the fermion action, but the method sticag easily extended to other
minimally-doubled formulations.

We concentrate on a minimally-doubled fermion action whigch slight generalization of
those presented by Karstén [103] and Wilczek [104]. The i@nrterm in the lattice action takes
the forme) D+. For free fermions we start in momentum space with

3 . 4

D(p) = ZZ’Y sin(p;) + 511?(404) (COS(G) +3- COS(m)) (270)
i=1 p=1

This includes a Wilson like term for the space-like hoppibgs containing an extra factor of

iva. As a function of the momentup),, the propagatob ! (p) has two poles, located at= 0,

ps = *a. Relative to the naive fermion action, the other doublersehaeen given a large

“imaginary chemical potential” by the Wilson like term. Tharameter allows adjusting the

relative positions of the poles. The original Karsten/\&lk actions correspond to= /2.

This action maintains one exact chiral symmetry, manitest¢he anti-commutation relation
[D,~s]+ = 0. The two species, however, are not equivalent, but havesifgpchirality. To see
this, expand the propagator around the two poles and obeene species, that corresponding
to p, = +a, uses the usual gamma matrices, but the second pole giveperirac behavior
using another set of matrice§ = I'~1,I. The Karsten/Wilczek formulation us&s= iy47s,
although other minimally-doubled actions may involve daliént transformation. After this
transformationy, = —~s, showing that the two species rotate oppositely under thetehiral
symmetry, and this symmetry should be regarded as “flavo@de can think of the physical
chiral symmetry as that generated in the continuum theory; boy.

It is straightforward to transform the momentum space adticEq. [270) to position space
and insert gauge fields;; = UJTZ. on the links connecting lattice sites. Explicitly indiagagithe
site indices, the Dirac operator becomes

3.6, e, — i
Di; = U Z %%
p=1
) 4
4 N Gigren Ty
+ sin(a) ((cos(a) +3)d;; — Uyj Z 5 ) (271)

p=1

Again we see analogy with Wilson fermions [10] for the spaicealions but augmented with an
174 inserted in the Wilson term.

Perturbative calculations [111] have shown that intecastiwith the gauge fields can shift
the relative positions of the poles along the direction leetwthem. In other words, the param-
etera receives an additive renormalization. Furthermore, tinen fof the action treats the fourth
direction differently than the spatial coordinates, tlsighie breaking of hyper-cubic symmetry
mentioned above. There arise three possible new coumtaster the renormalization of the
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theory. First there is a possible renormalization of thesib@-contribution to the action propor-
tional toity41). This provides a handle on the shift of the paramateBecondly, the breaking
of the hyper-cubic symmetry indicates one may need to atljedermion “speed of light.” This
involves a combination of the above on-site term and thengtheof temporal hopping propor-
tional tod; jy, + i, j—e, . Finally, the breaking of hyper-cubic symmetry can feedkiato the
gluonic sector, suggesting a possible counter-term of fByp¥F,,, to maintain the gluon “speed
of light.” In lattice language, this corresponds to adjugtthe strength of time-like plaquettes
relative to space-like ones.

Of these counter-terma), is of dimension 3 and is probably the most essential. Quantum
corrections induce the dimension 4 terms, suggesting theybe small and could partially be
absorbed by accepting a lattice asymmetry. How difficuls¢heounter-terms are to control
awaits simulations.

Note that all other dimension 3 counter-terms are forbidoeihasic symmetries. For ex-
ample, chiral symmetry forbidgr andiiyse terms, and spatial cubic symmetry removes
Uy, Yyiys, andio; ¢ terms. Finally, commutation with, plus space inversion eliminates
YyavsP.

The fundamental fieldh can create either of the two species. For a quantity thatesealy
one of them, it is natural to combine fields on nearby sitesizhs way as to cancel the other.
In other words, one can point split the fields to separate thespvhich occur at distinct “bare
momenta.” For the free theory, one construction that acdisings this is to consider

1 sin(qs + @)
u(q) = ? (1 + fifiLT) (g + aeyq)
R e @72)

wherel’ = iv4v5 for the Karsten/Wilczek formulation. Here we have inseftdors containing
zeros cancelling the undesired pole. This constructiorotsunique, and specific details will
depend on the particular minimally-doubled action in udee factor ofl” inserted in thel quark
field accounts for the fact that the two species use diffegantma matrices. This is required
since the chiral symmetry is flavored, corresponding to &ctfe minus sign iny; for one of
the species.

It is now straightforward to proceed to position space asgfingauge field factors to keep
gauge transformation properties simple

Uz,zfe4¢zfe4 - Um,m+e4¢z+e4 >

1 .
Uy = 5€" (wz +i

2 2sin(a)
1 ; Uzm—e Tr—e. _me e x+e

dy = =De i@ (g, —j =L ¥ 4 aresVotes ) (273)
2 2sin(a)

The various additional phase factors serve to remove thidatiens associated with the bare
fields having their poles at non-zero momentum.

Given the basic fields for the individual quarks, one can gdoooconstruct mesonic fields,
which then also involve point splitting. To keep the equagisimpler, we now consider the case
a = /2. For example, the neutral pion field becomes

FQ(I’) = %(ﬂwwt')uz - dm’YSdm) =
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% (4Em'757/)m + Em—e475wmfe4 + Em+e475¢z+e4
_wz+e4 UU751/11—64 - Ezfal UU’YSwm-ﬁ—e‘;) . (274)

Note that this involves combinations of fields at sites safeak by either 0 or 2 lattice spacings.
In contrast, they’ takes the form

(@) = 3(TaVsta + deVsda) =
% <Eze4 U’YSZZJz - EzU’}%dJ:ﬂf&L - Ez+e4 U75'¢)m + EIUV57/)z+e4) (275)

where all terms connect even with odd parity sites. In a regaper, Tiburzil[112] has discussed
how the anomaly, which gives thg a mass of orden ., can be understood in terms of the
necessary point splitting.

11.3 Domain wall and overlap fermions

The overlap fermion was originally developéd [113] as aftliofia fermion formulation using
four dimensional surface modes on a five dimensional latlites effectively amounts to using
Shockley surface states as the basis for a theory maingadhiinal symmetry([98]. For a review
see Ref.[[114]. The idea is to set up a theory in one extra difnarso that surface modes exist,
and our observed world is an interface with our quarks antbtepbeing these surface modes.
Particle hole symmetry naturally gives the basic Fermi@ms mass. In the continuum limit the
extra dimension becomes unobservable due to states intdréimrequiring a large energy to
create. In this picture, opposing surfaces carry stateppbsite helicity, and the anomalies are
due to a tunnelling through the extra dimension.

Ref. [115] discussed the general conditions for surfaceantal exist. Normalized solutions
are bound to any interface separating a region with sugieadrfrom sub-critical hopping. Ka-
plan’s original paper [98] considered not a surface, butraerface withAM = M., + me(x),
whereM.... is the critical value for the mass parameter where the fivedsional fermions would
be massless. Shamir [116] presented a somewhat simplargighere the hopping vanishes on
one side, which then drops out of the problem and we have acurf

To couple gluon fields to this theory without adding unneeatiegiees of freedom, the gauge
fields are taken to lie in the four physical space-time dioast and be independent of the fifth
coordinate. In this approach, the extra dimension is perih@st thought of as a flavor space
[117]. With a finite lattice this procedure gives equal cangsé of the gauge field to the Fermion
modes on opposing walls in the extra dimension. Since theated right handed modes are
separated by the extra dimension, they only couple throhghgauge field. The result is an
effective light Dirac Fermion. In the case of the strong liattions, this provides an elegant
scheme for a natural chiral symmetry without the tuning fehein the Wilson approach. The
breaking of chiral symmetry arises only through finitenddbe extra dimensiof.

The name “overlap operator” comes from the overlap of eigges of the different five
dimensional transfer matrices on each side of the interfaltkough originally derived from the

9The anomaly, however, shows that some communication batiheesurfaces survives even as the extra dimension
becomes infinite. This is possible since the same gauge &ieddsn each surface.
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infinite limit of the five dimensional formalism, one can fautate the overlap operator directly
in four dimensions. We begin with the Fermionic part of sore@eyic action as a quadratic
form S; = ¥ D+. The usual “continuum” Dirac operatd® = )" v, D,, naively anti-commutes
with 7s, i.e. [y5, D]+ = 0. Then the change of variablgs— e3¢ andy — e would
be a symmetry of the action. This, however, is inconsisteittt the chiral anomalies. The
conventional continuum discussion presented earlier ilapphenomenon into the Fermionic
measure [66].

On the lattice we work with a finite number of degrees of freadthus, the above variable
change is automatically a symmetry of the measure. To ghthl continuum discussion, it is
necessary to modify the symmetry transformation on th@ado that the measure is no longer
invariant. Remarkably, it is possible to construct a modi§gmmetry under which correspond-
ing actions are exactly invariant.

To be specific, one particular variation [69, 118-121] medithe change of variables to

b — ¢
w SN weze(l—aD)’Ys (276)

wherea represents the lattice spacing. Note the asymmetric wayhichithe independent
Grassmann variablag and+ are treated. Requiring the action to be unchanged givesthe r
lation [68[122, 123].

Dvs = =D + aDvysD = =35 D (277)

with 45 = (1 — aD)~s. To proceed, we also assume the Hermeticity conditigys = DT.
We see that the naive anticommutation relation receivesraction of order the lattice spacing.
The above “Ginsparg-Wilson relation” along with the Heriwigf condition is equivalent to the
unitarity of the combinatio’ = 1 — aD.

Neuberger([118, 119] and Chiu and Zenkin [120] presentedxatio# operator with the
above properties. They first construétvia a unitarization of an undoubled chiral violating
Dirac operator, such as the Wilson operaf®y,. This operator should also satisfy the above
Hermeticity conditiony; D.,vs = D}, . Specifically, they consider

V = =D, (D} D,)~ /2. (278)

The combinatior{ D}, D,,)~'/? is formally defined by finding a unitary operator to diagopeli
the Hermitian combinatio®; D.,, taking the square root of the eigenvalues, and then undoing
the unitary transformation.

Directly from V' we construct the overlap operator as

D=(1-V)/a. (279)

The Ginsparg-Wilson relation of Eq._(277) is most succinetitten as the unitarity of” coupled
with its v5 Hermeticity

’Y5V’75V =1. (280)

The basic projection process is illustrated in Eig. 29.
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Fig. 29. The overlap operator is constructed by projectirggeigenvalues of the Wilson operator onto a
circle. Figure taken from Ref.[124].

The overlap operator has several nice properties. Beingtaried from a unitary operator,
the normality ofD is guaranteed. But, most important, it exhibits a latticesiee of an exact
chiral symmetry.[[125] The fermionic actiohD1) is invariant under the transformation

b ey
B —s Petts (281)
where
Y5 = Vs. (282)

As with ~s, this quantity which appeared in EQ.(277) is Hermitean &mdduare is unity. Thus
its eigenvalues are all plus or minus unity. The trace defameisdex

V= %Tl"’% (283)

which plays exactly the role of the index in the continuumthié gauge fields are smooth, this
counts the topology of the gauge configuration. The factdr/afin Eq. (283) appears because
the exact zero modes of the overlap operator have partnetearpposite side of the unitarity

circle that also contribute to the trace.

At this point the hopping parameter in,, is a parameter. To have the desired single light
Fermion per flavor of the theory, the hopping parameter shbalappropriately adjusted to lie
above the critical value wher®,, describes a massless flavor, but not so large that additional
doublers come into play [126]. There are actually two patanseto play with, the hopping
parameter of),,, and the lattice spacing. When the latter is finite and gawidsfiare present,
the location of the critical hopping parameteriin, is expected to shift from that of the free
Fermion theory. As we saw when discussing the Aoki phaseg th@otentially a rather complex
phase structure in the plane of these two parameters, withuganumbers of doublers becoming
massless as the hopping is varied. The Ginsparg-Wilsotiaela and of itself does not in
general determine the number of physical massless Fermions

Although the Wilson operator entering this constructidoésal and quite sparse, the resulting
overlap action is not. Because of the inversion in Eg. (2T &)yolves direct couplings between
arbitrarily separated sitels [127—129]. How rapidly thesepdings fall with distance depends on
the gauge fields and is not fully understood. The five dimaradidomain-wall theory is local
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in the most naive sense; all terms in the action only coupbrest neighbor sites. However,
were one to integrate out the heavy modes, the resulting tesgy effective theory would also

involve couplings with arbitrary range. Despite these taoalities, encouraging studies [119,
130+-133] show that it may indeed be practical to implemeat#yuired inversion in large scale
numerical simulations. The overlap operator should haveang advantages over the domain
wall approach since a large number of fields corresponditiggtextra dimension do not need to
be stored.

The overlap approach hides the infinite sea of heavy Ferntaassin the extra dimension
of the domain wall approach. This tends to obscure the plesgiesence of singularities in the
required inversion of the Wilson kernel. Detailed analy&&4,135%] shows that this operator is
particularly well behaved order by order in perturbatioadty. This has led to hopes that this
may eventually lead to a rigorous formulation of chiral misdsuch as the standard model.

Despite being the most elegant known way to have an exactaneinod chiral symmetry
on the lattice, the overlap operator raises several isstlesse complications probably become
insignificant as the continuum limit is approached, but $thdne kept in mind given the high
computational cost of this approach. To begin with, the layes highly non-unique. It explicitly
depends on the kernel being projected onto the unitaryecifElven after choosing the Wilson
kernel, there is a dependence on the input mass parametmight want to define topology in
terms of the number of exact zero modes of the overlap operdtawever the non-uniqueness
leaves open the question of whether the winding number ofigeggaonfiguration might depend
on this choice. Later we will return to the question of polesémbiguities in defining topological
susceptibility in the continuum limit.

In this connection, it is possible to make a bad choice forttass parameter. In particu-
lar, if it is chosen below the continuum kappa critical vabfd /8, no low modes will survive.
This us true despite the fact that the corresponding openaiictill satisfy the Ginsparg-Wilson
condition. This explicitly shows that just satisfying then§arg-Wilson condition is not a suffi-
cient condition for a chiral theory. Conversely, if one ches the mass parameter too far in the
supercritical region, additional low modes will be prodddeom the doublers. As mentioned
earlier, the Ginsparg-Wilson condition does not immedyjatetermine the number of flavors in
the theory.

Another issue concerns the one flavor case, discussedre&dieause of the anomaly, this
theory is not supposed to show any chiral symmetry and hafds@ne bosons. Nevertheless,
one can construct the overlap operator and it will satisy @nsparg-Wilson condition. This
shows that the consequences of this condition are weakerftinahe usual continuum chiral
symmetry. With a conventional chiral symmetry, the spauteannot show a gap. Either we
have the Goldstone bosons of spontaneous chiral breaking bave massless fermions [136].

Finally the overlap behaves peculiarly for fermions in légtepresentations than the funda-
mental. As we discussed earlier, the number of zero modesiagsd with a non-trivial topology
in the continuum theory depends on the fermion representéiging considered. It has been
observed in numerical simulations that the appropriatetipligity is not always seen for the
overlap operator constructed on rough gauge configurafi@7.
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Fig. 30. When a fermion circumnavigates a loop in the naivenfdation, it picks up a factor that always
involves an even power of any particular gamma matrix. Eidrom Ref. [109].

11.4 Staggered fermions

Another fermion formulation that has an exact chiral synmmnistthe so called “staggered” ap-
proach. To derive this it is convenient to begin with the Uedidiscretization of the Dirac
equation from before. This considers fermions hopping betwnearest neighbor lattice sites
while picking up a factor oftiv, for a hop in direction:y. Going to momentum space, the
discretization replaces powers of momentum with trigonmiméunctions, for example

YuPu = YuSin(py). (284)

Here we work in lattice units and thus drop factorsiofAs discussed before, this formulation
reveals the famous “doubling” issue, arising because timiéa propagator has poles not only
for small momentum, but also whenever any component of th@embum is atr. The theory
represents not one fermion, but sixteen. And the varioubldosihave differing chiral properties.
This arises from the simple observation that

dip sin(p)|p=r = _dip sin(p)|p=o- (285)
The consequence is that the helicity projectdrst +5)/2 for a travelling particle depend on
which doubler one is observing.

Now consider a fermion traversing a closed loop on the ttids illustrated in Figl_30,
the corresponding gamma matrix factors will always invadweeven number of any particular
~u. Thus the resulting product is proportional to the identity a fermion starts off with a
particular spinor component, it will wind up in the same cament after circumnavigating the
loop. This means that the fermion determinant exactly fémts into four equivalent pieces.
The naive theory has an exd¢{4) symmetry, as pointed out some time ago by Karsten and
Smit [138]. Indeed, for massless fermions this is actualli{d) @ U(4) chiral symmetry. This
symmetry does not contradict any anomalies since it is refuh naiveU (16) ® U(16) of 16
species. The chiral symmetry generated/pyemains exact, but is allowed because it is actually
a flavored symmetry. As mentioned above, the helicity ptojsdor the various doubler species
use different signs foys.
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The basic idea of staggered fermions is to divide out thid) symmetry [139=141] by
projecting out a single component of the fermion spinor ochesite. Takingy — P, one
projector that accomplishes this is

4

where ther; are the integer coordinates of the respective lattice.slies immediately reduces
the doubling from a factor of sixteen to four. It is the vasoascillating sign factors in this
formula that give staggered fermions their name.

At this stage the naivE (1) axial symmetry remains. Indeed, the projector used abowe co
mutes with~s. This symmetry is allowed since four species, often callebtes,” remain.
Among them the symmetry is a taste non-singlet; under alctatation, two rotate one way
and two the other.

The next step taken by most of the groups using staggereddiesris the rooting trick. In
the hope of reducing the multiplicity down from four, the el@hinant is replaced with its fourth
root, |[D| — |D|'/*. With several physical flavors this trick is applied sepalsato each. In
simple perturbation theory this is correct since each femtoop gets multiplied by one quarter,
cancelling the extra factor from the four “tastes.”

At this point one should be extremely uneasy: the exact kbyrametry is waving a huge red
flag. Symmetries of the determinant survive rooting, and the exact/ (1) axial symmetry for
the massless theory remains. For the unrooted theory tlisalavored chiral symmetry. But,
having reduced the theory to one flavor, how can there be arld\aymmetry without multiple
flavors? We will now show why this rooting trick fails non-petbatively when applied to the
staggered quark operator.

1
P=- (1 i e (~ 1P gy (— 1)+ m—nwwm) (286)

11.5 The rooting issue

In previous sections we have seen that the chiral symmettyMj fermion flavors has a rather
complicated dependence avy. With only one flavor there is no chiral symmetry at all, while
in general if the fermions are massless, there]‘@?e— 1 Goldstone bosons. We have also seen
a qualitative difference in the mass dependence betweeveanamd an odd number of species.
Physics does not behave smoothly in the number of flavors laedaises issues for fermion
formulations that inherently have multiple flavors, sucls@ggered fermions.

Starting with four flavors, the basic question is whether careadjustV; down to one using
the formal expression

D+m 0 0 0 T
0 D+m 0 0
0 o im0 =|D+m? (287)
0 0 0 D+m

This has been proposed and is widely used as a method fonalimg the extra species appearing
with staggered fermion simulations.

At this point it is important to emphasize that asking abdt viability of Eq. [287) is a
vacuous question outside the context of a regulator. Feldrly has divergences that need to be
controlled, and, as we have seen above, the appearancemébe®requires care. In particular,
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the regulated theory must explicitly break all anomalouamsetries in a way that survives in the
continuum limit.

So we must apply Eq_(Z287) before removing the regulators Ehgenerally expected to be
okay as long as the regulator breaks any anomalous symsafipeopriately on each of the four
factors. For example, we expect rooting to be valid for faapies of the overlap operator. This
satisfies a modified chiral symmetfyys = —45D where the gauge winding appears in the
gauge dependent matrixthroughTrys; = 2v.

Sectior® showed that in the continuum withy degenerate flavors there isZa;, symmetry
in mass parameter space corresponding to taking e>*75/Nsm. Suppose we try to force the
Z4 symmetry in the regulated theory before we root. This islgasicomplished by considering
the determinant

iTYE

D+ me™1 0o ] 0 0
0 D +me™s 0 s 0 . (288)
0 0 D+ me = i
0 0 0 D+ me— 1"

This maintains the above symmetry through a permutatiohefdur flavors. This modification
of the determinant still gives a valid formulation of the fdlavor theory at vanishin@ because
the imposed phases cancel. But expressed in this way, wewsthrfour one-flavor theories
each with a different value &d. Were we to root this form, we would be averaging over four
inequivalent theories. This is not expected to be correathras we would not expect rooting
two different masses to give a theory of the average mass;

(ID +mal|D +ma|)/? # |D + \/mimg| . (289)

So we have presented both a correct and an incorrect way ta ifoar flavor theory down
to one. What is the situation with staggered fermions, tiagny place where rooting has been
applied? The problem is that the kinetic term of the staghantion maintains one exact chiral
symmetry even at finite lattice spacing. Without rootingstisi flavor non-singlet amongst the
“tastes.” As discussed earlier, there are two tastes of elichlity. But, because of this exact
symmetry, which contains &, subgroup, rooting to reduce the theory to one flavor is simila
to the second case above and is not expected to be valid. tinydar, rooting does not remove
the Z, discrete symmetry in the mass parameter, a symmetry which nat be present in the
one flavor theory. Thus, just as in the above example, thedast not equivalent and rooting
averages inequivalent theories.

The conclusion is that rooted staggered fermions are not.@oDwhat is expected to go
wrong? The unbroke&, symmetry will give rise to extra minima in the effective potial as
a function ofe andn’. In particular, for one flavor QCD one will get an effectivet@atial with
minima along the lines of Fi§. 13 instead of the desired smecof Fig.[1h. Forcing the extra
minima would most likely drive the’ mass down from its physical value. This shift should be
rather large, of ordeAgcp. This is testable, but being dominated by disconnectedraiag,
may be rather difficult to verify in practice. In additionvife vary the quark masses, the extra
minima will result in phase transitions occurring wheneay single quark mass passes through
zero. The previous discussion of the one flavor theory andvtleeflavor theory with non-
degenerate quarks both show that this is unphysical; notatelis expected when only a single
mass passes through zero.
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This problem is admittedly subtle. Formula{287) seemsitingly obvious and does work
if the individual factors take care of the possible anonsalaes with four copies of the overlap
operator@ Itis also correct perturbatively, since the rooting faceduces any fermion loop by
the correct amount. However, the basic structure built igaitier sections makes it indisputable
that the dependence of QCD on the parameter Theta is reah tiMt staggered action, the
distinct tastes are not equivalent due to their differemigyér under chiral rotations. It is this
inequivalence that is at the heart of the failure of rootioigthis particular action.

Despite these problems, several lattice collaborationirmee to pursue staggered fermions
using the rooting trick [142-144]. The justification is pitiecause the simulations are slightly
faster than using Wilson fermions, and partly because thetehiral symmetry simplifies op-
erator mixing. The success of a variety of calculations Wiaie not strongly dependent on the
anomaly shows the approach, while technically incorreatfien a good approximation. On the
other hand, if one’s goal is to test QCD as the theory of transgtinteractions or to estimate QCD
corrections to standard model processes, then one mustreenesty wary of any discrepancies
found using this method.

12 Otherissues

12.1 Quantum fluctuations and topology

We have seen how zero modes of the Dirac operator are clasdlyat the anomaly. And we
have seen that for smooth classical fields, configuratiositsgive zero modes for the classical
Dirac operator do indeed exist. However, when getting intmerdetail with defining a lattice
Dirac operator, we found subtle issues about which opetatose. And way back in Sectigh 2
we saw that typical fields in path integrals are non-difféisdsle. This leads to the question of
unigueness for the winding number of a given gauge configuraindeed, is something like the
topological susceptibility of the vacuum a true physicaetvable?

In [145] a definition of topological charge was constructsihg the naive fermion operator
as a regulator for the trace ¢f as in the earlier derivation of the index theorem. This ofera
does not generally give an integer value for a typical gawgdiguration in simulations. How-
ever, it does reduce to such after a cooling procedure istosedhove short distance fluctuations.
The results of such are shown in Hig] 31. On the other handjgthge field space in lattice gauge
theory is simply connected. Empirically with enough cogliany.SU(2) gauge configuration
appears to eventually decay to a state of zero action, gaugeséent to the vacuum.

Since configurations appear to cool ultimately to triviahding, using a cooling algorithm
to define topology requires an arbitrary selection for aoptime. Modifying the Wilson action
can prevent the winding decay. For example, forbiddingdltiéck action on any given plaguette
from becoming larger than a small enough number can prewstdrton decay [146]. Such
an “admissibility” condition, however, violates refleatipositivity [80] and arbitrarily selects a
special instanton size where the action is minimum.

Cooling time is not the only issue here. While attaining aeger winding requires cooling,
note in Fig.[31 that the initial cooling stages seem quiteotha This raises the question of
whether the discrete stages reached after some cooling ahéglend rather sensitively on the

10 A few still hide behind this wall so frail,
So blind to chiral twists that made it fail.
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Fig. 31. The winding number as a function of cooling stepsafset of 5 lattices of siz#6? at 5 = 2.3.
Note how it settles into approximately integer values witicasional jumps between different windings.

Figure from Ref.[[145].

cooling algorithm. In Fig_32 | show the evolution of a sinfgittice with three different relaxation
algorithms. One algorithm consists of sweeping over thietausing checkerboard ordering and
replacing each link with the group element that minimizesahtion associated with the given
link. This is done by projecting the sum of staples that iatewith the link onto the group. For
the second approach, an under-relaxed algorithm addsdtieloto the sum of the neighborhood
staples before projecting onto the new group element. lyjrzad over-relaxed approach subtracts
the old element from the staple sum. The resulting windingsonly depend on cooling time,
but also on the specific algorithm chosen.

In an extensive analysis, Ref. [147] has compared a variefijtering methods to expose
topological structures in gauge configurations. All schemave some ambiguities, but when
the topological structures are clear, the various appremeihen carefully tuned give similar
results. Nevertheless the question remains of whethee fhex rigorous and unambiguous def-
inition of topology that applies to all typical configurati®arising in a simulation. Luscher has
discussed using a differential flow with the Wilson gaugéscto accomplish the cooling [148].
This corresponds to the limit of maximal under-relaxati®his approach still allows the above
topology collapse unless prevented by something like tih@ssibility condition or the selection
of an arbitrary flow time. In addition, if one wishes to det@rmthe topological charge of a
configuration obtained in some large scale dynamical sitimmait is unclear why one should
take the particular choice of the Wilson gauge action forcthaling procedure.

The high sensitivity to the cooling algorithm on rough gawgefigurations suggests that
there may be an inherent ambiguity in defining the topoldgibarge of typical gauge configu-
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Fig. 32. The topological charge evolution for three differeooling algorithms on a singlé = 2.3 lattice
configuration forSU (2) on al16? lattice. Figure from Ref[[145].

rations and consequently a small ambiguity in the definitibtopological susceptibility. It also
raises the question of how smooth is a given definition of imgioal charge as the gauge fields
vary; how much correlation is there between nearby gaugigroations? Although such issues
are quite old([149], they continue to be of considerablerege[150-152].

As topological charge is suppressed by light dynamicalkgjdhis is connected to the ques-
tion discussed earlier of whether the concept of a singlestess quark is well defined [26].
Dynamical quarks are expected to suppress topologicaltanes, and the chiral limit with mul-
tiple massless quarks should give zero topological sudiigtwith a chiral fermion operator,
such as the overlap. However, with only a single light quérk,lack of chiral symmetry indi-
cates that there is no physical singularity in the contindheory as this mass passes through
zero. Any scheme dependent ambiguity in defining the quadsm@auld then carry through to
the topological susceptibility.

One might argue that the overlap operator solves this pnobledefining the winding num-
ber as the number of zero eigenvalues of this quantity. lthdebas been shown [152, 153] that
this definition gives a finite result in the continuum limit.sAne is using the fermion opera-
tor only as a probe of the gluon fields, this definition can Herraulated directly in terms of
the underlying Wilson operatar [154]. While the result mayé a finite continuum limit, the
earlier discussion showed that the overlap operator is nigfug. In particular it depends on
the initial Dirac operator being projected onto the ovedaple. For the conventional Wilson
kernel, there is a dependence on the parameter commoniye@te as the domain-wall height.
Whether there is an ambiguity in the index defined this wayeddp on the density of real eigen-
values of the kernel in the vicinity of the point from whichetprojection is taken. Numerical
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evidence([130] suggests that this density decreases wiitelapacing, but it is unclear if this

decrease is rapid enough to give a unique susceptibilithencontinuum limit. The admissi-

bility condition also successfully eliminates this ambtguhowever, as mentioned earlier, this
condition is inconsistent with reflection positivity.

Whether topological susceptibility is well defined or noeses to have no particular phe-
nomenological consequences. Indeed, this is not a quatitégtly measured in any scatter-
ing experiment. It is only defined in the context of a techhaefinition in a particular non-
perturbative simulation. Different valid schemes for fagjng the theory might well come up
with different values; it is only physical quantities suchreadronic masses that must match be-
tween approaches. The famous Witten-Veneziano reldti68,[156] does connect topological
susceptibility of the pure gauge theory with the eta primessna the large number of colors
limit. This mass, of course, remains well defined in the ptaistase of three colors, but the
finite N, corrections to topology can depend delicately on gaugefligttiations, which are the
concern here.

12.2 The standard model

Throughoutthe above we have concentrated on the strorrgatitens. It is only for this sector of
the standard model that perturbation theory fails so spatady. But the weak and electromag-
netic interactions are crucial parts of the full standardieidgravitation is ignored here since it
has even more serious unsolved problems). And for thesegtiens it is also true that the per-
turbative expansion does not converge. Because the untiedyuplings are so small, this does
not appear to be of any practical importance; however, quuedly it is quite desirable to have
a lattice formulation for these interactions as well. Fropuaist point of view, the continuum
limit of a lattice theory defines a continuum field theory. $hwithout a lattice description of the
other interactions it is unclear whether we can say they atefaunded field theories.

In this context we note that the general picture of the stahdedel has changed dramat-
ically over the years. Originally it was the successes ohta electrodynamics that made it
the model relativistic field theory. Before QCD, the strontgractions were a mystery. But now
we see that because of asymptotic freedom, QCD on its owkelyIlto be a well defined and
self contained theory. It is the electroweak theory, wherth bhe electric charge and the Higgs
couplings are not asymptotically free, for which we lack a+p@rturbative formulation. Indeed,
a speculative topic such as the possibility of emergentigravay be intimately tied to these
issues with the weaker forces.

For the electromagnetic interactions, a lattice formalatt first seems straightforward, in-
volving the introduction of an additiondl (1) gauge field for the photons. Unlike the strong
interaction case, however, for electrodynamics we do neg¢ haymptotic freedom to tell us how
to take the continuum limit. And the physical coupliag~ 1/137 seems to be an unnaturally
small number. Perhaps electrodynamics on its own does halbcexist as a field theory, much
as believed for the scalar* theory. But photons and electrons are essential compoteetiie
world around us. One interesting possibility is that eleectagnetism is actually only a part of a
higher level theory, perhaps in some unification with therggrinteractions.

With the weak interactions we hit a more serious snag in they &re known to violate
parity. ThelW bosons appear to interact only to left handed fermions. &k ste need to couple
the fermions in a chiral manner, and it is not known how to de th any non-perturbative
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scheme. The problem here is closely tied to the anomaly amfhttt that not all currents can

be simultaneously conserved. Indeed, when applied to tla eractions, the 't Hooft vertex

gives rise to effective interactions that do not conserwgdranumber. Any complete non-

perturbative formulation must allow for such processesg[1%Bome attempts to include such
in a domain wall formulation have been presented [115, I58]these generally involve heavy
additional states such as “mirror” fermioms [159]. Whilggmtially viable, such approaches so
far lack the theoretical elegance of the original Wilsoridat gauge theory. Indeed, it is the
problem of chiral gauge theories that encourages studiehicdl symmetry from all possible

angles.

Perhaps a lattice formulation more intimately tied to uaifien ideas could help here. The
groupSO(10) looks quite interesting in this context [76]. Here a singémeration of fermions
fits nicely into a single 16 dimensional representation &f ¢glnoup. And in this picture anoma-
lies are automatically cancelled. This would seem to indithat there should be no obvious
requirement for doublers as an obstacle to a lattice coetgtru However, the usual Wilson ap-
proach seems to require a term that is not a singlet undegtbig. This could be overcome
with some added Higgs-like scalar fields, but then we geecltsthe above mentioned models
with the doublers playing the role of mirror fermions.

12.3 Where is the parity violation?

The standard model of elementary particle interactionsagetd on the product of three gauge
groups,SU(3) ® SU(2) @ U(1)em. Here theSU (3) represents the strong interactions of quarks
and gluons, thé&/(1).,, corresponds to electromagnetism, and$fig2) gives rise to the weak
interactions. We ignore here the technical details of edb@atak mixing. The full model is, of
course, parity violating, as necessary to describe obdémigcities in beta decay. This violation
is normally considered to lie in th8U (2) of the weak interactions, with both th#/(3) and
U(1).., being parity conserving. We will show here that this is atjua convention, adopted
primarily because the weak interactions are small compi@ar#ue others. We show below that
reassigning degrees of freedom allows a reinterpretatioerevtheSU (2) gauge interaction is
vector-like. Since the full model is parity violating, thisocess shifts the parity violation into
the strong, electromagnetic, and Higgs interactions. Esalting theory pairs the left handed
electron with a right handed anti-quark to form a Dirac fesmiWith a vector-like weak interac-
tion, the chiral issues which complicate lattice formuwat now move to the other gauge groups.
Requiring gauge invariance for the re-expressed elecogtesm then clarifies the mechanism
behind one proposal for a lattice regularization of thedtad model[160, 161].

For simplicity we consider here only the first generationjolihinvolves four left handed
doublets. These correspond to the neutrino/electrontgpad plus three colors for the up/down
quarks

(), (), (), (),

Here the superscripts from the sgt g, b} represent the internafU (3) index of the strong
interactions, and the subscriptindicates left-handed helicities.

If we ignore the strong and electromagnetic interactiogesyihg only the wealsU(2), each
of these four doublets is equivalent and independent. Wearbitrarily pick two of them and
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do a charge conjugation operation, thus switching to thdiparticles
(), ()
j: L %q R (291)
(), — (%),

In four dimensions anti-fermions have the opposite hegticio, we label these new doublets with
R representing right handedness.
With two left and two right handed doublets, we can combiretfinto two Dirac doublets

(). (&),

7 7 (292)
(e).) \(5),
Formally in terms of the underlying fields, the constructiakes
1 1
=50 = 7)Y + 51+ 7)Y G )
X = %(1 = Y5)¥(ur ary + %(1 +75)Y 5 - (293)

From the conventional point of view, these fields have rapleeuliar quantum numbers. For
example, the left and right parts have different electriargkes. Electromagnetism now violates
parity. The left and right parts also have different stromgmfum numbers; the strong interac-
tions violate parity as well. Finally, the components haifeetent masses; parity is violated in
the Higgs mechanism.

The different helicities of these fields also have variamgbanumber. This is directly related
to the known baryon violating processes through weak “irtstas” and axial anomalies [19].
When a topologically non-trivial weak field is present, tké&ahanomaly arises from a level flow
out of the Dirac sed [162]. This generates a spin flip in theliéle. e, — (u9)r. Because of

the peculiar particle identification, this process doexnoserve charge, with @ = —% +1=
%. This would be a disaster for electromagnetism were it notHe fact that simultaneously
the other Dirac doublet also flipg ', — (@)R with a compensating\@Q = —%. This is

anomaly cancellation, with the totAlQ) = % — % = 0. Only when both doublets are considered
together is thé/(1) symmetry restored. In this anomalous process baryon nuislviglated,
with L + Q — Q + Q. This is the famous “ ‘t Hooft vertex?[19] discussed eariiethe context
of the strong interactions.

12.4 A lattice model

The above discussion on twisting the gauge groups has beka gontinuum. Now we turn to
the lattice and show how this picture leads to a possiblie¢athodel for the strong interactions,
albeit with an unusual added coupling that make the treatopgite difficult to make rigorous
[160,/161]. Whether this model is viable remains undecitetjt does incorporate many of the
required features.
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Q=-2/3 Q=-1

Fig. 33. Pairing the electron with the anti-green-up-quéikure taken from [161].

For this we use the domain wall approach for the fermions12€]. As discussed earlier, in
this picture, our four dimensional world is a “4-brane” erdfled in 5-dimensions. The complete
lattice is a five dimensional box with open boundaries, ardpghrameters are chosen so the
physical quarks and leptons appear as surface zero mode=ldgmance of this scheme lies in
the natural chirality of these modes as the size of the extnamsion grows. With a finite fifth
dimension one doubling remains, coming from interface®appg as surface/anti-surface pairs.
It is natural to couple a four dimensional gauge field equilpoth surfaces, giving rise to a
vector-like theory.

We now insert the above pairing into this five dimensionaksaé. In particular, consider the
left handed electron as a zero mode on one wall and the rigiatdtbanti-green-up-quark as the
partner zero mode on the other wall, as sketched i Elg. 3. prbvides a lattice regularization
for the SU(2) of the weak interactions.

However, since these two particles have different electrarge[/ (1) g, must be broken in
the interior of the extra dimension. We now proceed in anatodghe “waveguide” picture [163]
and restrict this charge violation () to one layer at some interior positian = 7. Using
Wilson fermions, the hopping term fromy = itoi + 1

Y Pit (P=(y+71)/2) (294)

isa@ = 1/3 operator. At this layer, electric charge is not conserveus ¥ unacceptable and
needs to be fixed.

To restore the/ (1) symmetry one must transfer the charge frgmo the compensating
doublety. For this we replace the sum of hoppings with a product on flemding layer

;i PYis1+X; PXit1—0; PYiv1 XX PXit (295)

This introduces an electrically neutral four-Fermi operatNote that it is baryon violating,
involving a “lepto-quark/diquark” exchange, as sketchedrig.[34. One might think of the
operator as representing a “filter” a¢ = 4 through which only charge compensating pairs of
fermions can pass.

In five dimensions there is no chiral symmetry. Even for theeftheory, combinations like
1, P11 have non-vanishing vacuum expectation values. We use suaHtadpole,” withy
generating an effective hopping fgrandvice versa

Actually the above four fermion operator is not quite suéfitifor all chiral anomalies, which
can also involve right handed singlet fermions. To corrbid tve need explicitly include the
right handed sector, adding similar four fermion couplifaso electrically neutral). The main
difference is that this sector does not couple to the weakrms
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Fig. 34. Transferring charge between the doublets. Figkert from[[161].

Having fixed theU (1) of electromagnetism, we restore the stro$ify(3) with an anti-
symmetrization of the quark color indices in the new opearaff QIQ°— *#1QQQ".
Note that similar left-right inter-sector couplings aresded to correctly obtain the effects of
topologically non-trivial strong gauge fields.

An alternative view of this picture folds the lattice abol tinterior of the fifth dimension,
placing all light modes on one wall and having the multi-fesmoperator on the other. This is the
model of Ref.[[160], with the additional inter-sector cangk correcting a technical error [164].

Unfortunately the scheme is still not completely rigorolmsparticular, the non-trivial four-
fermion coupling represents a new defect and we need to dmatthis does not give rise to
unwanted extra zero modes. Note, however, that the five dilbeal mass is the same on both
sides of defect; thus there are no topological reasons fidr. su

A second worry is that the four fermion coupling might indwre unwanted spontaneous
symmetry breaking of one of the gauge symmetries. We neeehtain in a strongly coupled
paramagnetic phase without spontaneous symmetry breakiefy [160] showed that strongly
coupled zero modes do preserve the desired symmetrie)dantlysis ignored contributions
from heavy modes in the fifth dimension.

Assuming all works as desired, the model raises severat ottegesting questions. As for-
mulated, we needed a right handed neutrino to provide alkguaith partners. Is there some
variation that avoids this particle, which decouples frdhgauge fields in the continuum limit?
Another question concerns possible numerical simulatisnthe effective action positive? Fi-
nally, we have used the details of the usual standard madelirig open the question of whether
this model is somehow special. Can we always find an apptepmalti-fermion coupling to
eliminate undesired modes in other chiral theories wheoematies are properly cancelled.

13 Final remarks

We have seen how many features of QCD are influenced by nduarpative physics. This is
particularly important to various aspects of chiral symmétreaking. Taken as a whole, these
fit together into a rather elegant and coherent picture. tiquéar, chiral symmetry is broken in
three rather different ways. We have concentrated on tieeglaty of these mechanisms.

The primary and most important effect is the dynamical sytmnlereaking that leads to
the pions being light pseudo-Goldstone bosons. Their dyecsarepresents the most important
physics for QCD at low energies. The popular and useful thkpansion is a natural expansion
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in the momenta and masses of these particles.

In addition to the basic dynamical breaking is the anomahyctveliminates the flavor-singlet
axial U (1) symmetry of the classical theory. Thus thlemeson is not a Goldstone boson and
acquires a mass of orddr,.,. Understanding this breaking requires non-perturbativesizs
associated with the zero modes of the Dirac operator.

Finally, we have the explicit symmetry breaking from the iumasses. This is respon-
sible for the pseudo-scalar mesons not being exactly nssssldsing the freedom to redefine
fields using chiral rotations, the number of independentsnpasameters i&/; + 1 where N
is the number fermion species under consideration. Thiadies the possibility of CP violation
coming from the interplay of the mass term with the anomaly.

Throughout we have used only a few widely accepted assungtsnch as the existence of
QCD as a field theory and standard ideas about chiral symmiEnys it is perhaps somewhat
surprising that several of the conclusions remain contsige The first of these is that chiral
symmetry is lost in a theory with only one light quark. Theuléiag additive non-perturbative
renormalization of the mass precludes using a masslessam tpusolve the strong CP prob-
lem. Tied to this is the issue of whether topological susbdipy is well defined when non-
differentiable fields dominate the path integral. Finatlypbably the most bitter controversies
revolve about the symmetries inherent in the staggereduiation and how these invalidate the
use of rooting to remove unwanted degeneracies.

As simple as the overall picture is, it requires understagdiffects that go well beyond
perturbation theory. We need aspects of the Dirac specthamrély on gauge fields of non-
trivial topology. Such appear already in the classical themthough their true importance only
appears in the context of the anomaly. Including this ricysids properly in a lattice formulation
is a rich and sometimes controversial topic of active ragear
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